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foreword
When I think about metaprogramming I view it through three sets of experience: as a
computer scientist, a business developer, and a .NET framework author.

 From a computer science perspective, it is clear that our industry has been largely
stagnant from a language perspective for an extremely long time. The slow evolution
of 3GLs (third-generation languages) from C to C++ to Java to C# has resulted in
incremental improvements, but no major leaps in terms of developer productivity,
maintainability of code, reduction of complexity, or other meaningful metrics.

  (I chose the C language progression in my example because it is perhaps the most
widely known. Comparable progressions exist for BASIC, Pascal, and many other lan-
guage families.)

 Metaprogramming offers interesting possibilities around the creation of domain-
specific languages and other abstraction concepts that could eventually break us out
of the 3GL world we’ve lived in for the past 20-30 years. Although this book doesn’t
focus on such a long-term goal, I think you can use Metaprogramming in .NET as a start-
ing point to gain valuable perspective on myriad core ideas that might inspire you to
think more about the future of our industry.

 As someone who’s been a business developer for over 25 years, I’ve watched as
metaprogramming has become one of the most mainstream and important tools for
software development. Metaprogramming enables development time code generation
as well as software that can dynamically adapt its behaviors at runtime.

 In the mid-1990s people mocked attempts by Microsoft and others to create “wiz-
ards” that generated code for various business application scenarios. Today, such code
xiii



FOREWORDxiv
generation tools are considered invaluable in environments as varied as Ruby on
Rails, Eclipse, and Visual Studio. Most business developers rely daily on massive
amounts of code generated by their tools during the development and build process.

 Similarly, developers rely on runtime-generated code created by test mocking
frameworks, dynamic UI generation tools, rules engines, and more. Even more subtle
aspects of metaprogramming, such as the use of introspection (reflection) to create
data binding frameworks, are pervasive.

 This book explores a number of the underlying technologies and techniques used
to implement code generation and dynamic applications during the development,
build, and runtime phases of an application’s lifecycle. Understanding these concepts
is important for effective use of existing tools, and critical for creating your own or
improving those that exist.

 Finally, I am the author of the widely used CSLA .NET business objects framework.
Within my framework I make extensive use of many of the techniques discussed in this
book, including reflection, dynamic type loading, and expression trees.

 A framework such as CSLA .NET couldn’t exist without these technologies, and
without the basic concepts of metaprogramming. Nor is CSLA .NET unique in this
regard. Many frameworks in the data layer, business layer, and presentation layer
make heavy use of metaprogramming techniques to provide broad and flexible sup-
port for object-relational mapping, business rules, validation rules, data binding, and
dynamic UI generation.

 In my view, metaprogramming is extremely important because its core concepts
are used in popular development and testing frameworks and tools, as well as to
enable code generation tooling and dynamic application behaviors. It is also one of
the most promising areas of focus for the future of our industry as we look for ways to
improve maintainability and reduce the cost of software over its lifetime. 

 This book is an excellent way to get started down the road of understanding and
fully using the power of metaprogramming.

ROCKFORD LHOTKA

CTO AT MAGENIC

CREATOR OF THE CSLA .NET FRAMEWORK



preface
In software development, metaprogramming is one of those words that sounds fancy
and sophisticated—and somewhat intimidating at the same time. But what does it
mean to be doing metaprogramming? The meta prefix can mean changed or higher. It
can also mean after or beside, depending on the context. All of those terms describe
the various forms of metaprogramming that we cover in this book. 

 You may choose to do metaprogramming in order to change code to support a
higher level of abstraction within your system or to inject some new behavior that suits
your particular needs. You may choose to do these things at compile time, between
compile time and deployment, or even at runtime. Because of the flexible nature of
the meta prefix, all of these scenarios qualify as metaprogramming.

 No matter your reasons for doing metaprogramming, you must have a firm grip on
the larger architectural picture of your project to do it effectively. That’s why metapro-
gramming is sometimes considered a dark art, to be practiced only by senior develop-
ers and architects. Nothing could be further from the truth. Everyone can do some
form of metaprogramming. By manipulating code with other code the metaprogram-
ming way, you can suddenly tackle classes of coding problems that you were never able
to overcome before. 

 Your foray into metaprogramming may be to improve code reuse through sim-
ple templating or reflection. But soon you might also find yourself doing it to
reduce the complexity of your systems. For example, weaving the code that does
logging, performance monitoring, or transaction handling into a class library after
it’s been compiled can greatly increase developer comprehension by reducing code
xv



PREFACExvi
complexity. Hiding all of that plumbing with metaprogramming can benefit every-
one on the team.

 We love metaprogramming. We want to create beautiful pieces of code that can
enable conventions in applications that make adding a new aspect easy. We want to be
able to optimize our code at runtime so it can perform faster. We want to analyze our
code so we can find issues before compilation. We want to shape whole bodies of tem-
plated code to schemas at runtime, perhaps even compiling them on the fly to get
excellent performance. Metaprogramming helps realize all these goals. We’d also like
for you to fall in love with metaprogramming so you can reach higher goals. That’s
really what we hope to instill in you with this book: a passion to view your code in a dif-
ferent, often more abstract way.

 To be fair, it’s not as easy to do metaprogramming in .NET compared to other lan-
guages like Ruby. At least it seems that way when you first dive in. Dynamic languages
let you easily manipulate your code, and such concepts are exposed as first-class citi-
zens in languages like Python and Ruby. C# and Visual Basic .NET are usually not
touted as being dynamic or malleable. Surprisingly, though, there are a lot of ways to do
real metaprogramming in .NET. They may not be obvious or easy to carry out at first,
but they are there at almost every turn. Some metaprogramming features of .NET are
baked into the Common Language Runtime (CLR). Some exist as code in the Frame-
work Class Library (FCL). Still more metaprogramming capabilities show up as lan-
guage features in C# and Visual Basic .NET. Once you understand how some of these
features work, you’ll be well on your way to seeing problems in a whole new light. 

 Writing this book has been laborious, time-consuming, and frustrating, but above
everything else, a joy. As far as we’re concerned, this is the “fun stuff” in software
development. It’s also the “stuff” that can truly transform your code into something
amazing, as long as you’re willing to stretch your boundaries. So take a deep, cleans-
ing breath and dive in with us. You’ll find that the metaprogramming waters aren’t as
choppy as they may seem at first glance. We believe that in the end, you’ll be glad you
made the journey. 

 We also believe that once you’ve mastered a new concept or two, you’ll be ready to
convince your peers that the metaprogramming seas are smooth enough for anyone
to sail on them.
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about this book
Metaprogramming in .NET requires you to move beyond the canonical material of inter-
faces, virtual methods, and events to more advanced and probably unknown concepts
like reflection, assembly rewriting, expressions, and code analysis. If you’ve never
encountered these APIs or techniques, it may feel a little daunting to even approach
the first chapter! 

 We don’t “pontificate on the profound”—that is, although you’ll be exposed to
new ideas, you won’t read about every extreme, esoteric corner of metaprogramming.
Rather, you’ll be guided into these realms with an understanding of why you need to
learn about these techniques. At the end of the day, we want you to not only gain an
appreciation of how powerful metaprogramming is, but how to use this material in
your day-to-day coding experiences.

 Throughout this book, you’ll learn about different techniques and frameworks.
They all have their strengths and weaknesses. Some work well in some areas of an
application, and others shine somewhere else. You’ll understand when it’s best to use
one tool, and what the trade-offs are in using a particular approach.

Roadmap
■ Chapter 1 provides a broad introduction into the world of metaprogram-

ming. We provide high-level examples to explain just what metaprogramming is
all about.

■ Chapter 2 moves into the world of reflection, describing how to query code,
find out what it contains, and manipulate it.
xix
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■ Chapter 3 discusses code generation with T4. You’ll discover how the template
engine works and where it makes sense to use code generation in an application.

■ Chapter 4 covers the CodeDOM and why it’s still an applicable API to use in cer-
tain development scenarios.

■ Chapter 5 dives into the Reflection.Emit API. You’ll learn about the inner work-
ings of an assembly and how to dynamically create code at runtime with this API.

■ Chapter 6 is all about expressions, specifically LINQ expressions. You’ll see how
to create small snippets of code and change their behavior at runtime.

■ Chapter 7 takes the Emitter API one more step and shows how to rewrite assem-
blies, providing a path where you can inject reusable bits of code to enhance
compiled code.

■ Chapter 8 covers the Dynamic Language Runtime, or DLR. You’ll learn all
about binding, dynamic objects, and other things the DLR provides.

■ Chapter 9 looks at other tools and frameworks, as well as other languages that
make it easier to use metaprogramming within .NET.

■ Chapter 10 rounds out the book with a look into the future with Project Roslyn,
a compiler API from Microsoft that will provide a view into your code like you’ve
never had from them before.

■ There are two appendixes. Appendix  A is an overview of Windows 8 and how
metaprogramming in .NET works in Windows Store applications.  Appendix B is
a usage guide summary of the techniques presented in chapters 2–10.

Who should read this book?
If you’re a .NET developer who wants not only to learn more than just how to “do”
dependency injection and “use” controllers, but also to create frameworks that pro-
vide useful services to other developers, then this book is for you. Many popular .NET
frameworks that make hard problems simple usually end up using one or more of the
techniques presented in this book, but they structure their work in such a way that
you probably don’t see it (which is usually a good thing). If you want to create these
components, you’ll need to know how these techniques work, and this book provides
that guidance.

 We assume that you’re familiar with the base competencies that a .NET developer
would have. For example, we expect that you know what a class is, the difference
between a virtual and a non-virtual method, and what sealed means in C#. 

Code conventions and downloads
This book contains numerous code examples. All the code is in a fixed-width font
like this to separate it from ordinary text. Code members such as method names,
class names, and so on are also in a fixed-width font.

 Source code examples in this book are fairly close to the samples that you’ll find
online. But for brevity’s sake, we may have removed material such as comments from
the code to fit it well within the text.
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 Annotations accompany many of the source code listings, highlighting important
concepts. In some cases, numbered bullets link to explanations that follow the listing.

 The source code for the examples in the book is available for download from the
publisher’s website at www.manning.com/Metaprogrammingin.Net. It is also available
from http://metadotnetbook.codeplex.com. 

 To run the samples, you’ll need to download some of the tools and languages we use
in this book. We provide links in the text to places where you can get the relevant files.

Author Online
The purchase of Metaprogramming in .NET includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser at www.manning.com/
Metaprogrammingin.NET. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contributions to the forum remain voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions, lest their interest stray! 

 The Author Online forum and archives of previous discussions will be accessible
from the publisher’s web site as long as the book is in print.

About the authors
KEVIN HAZZARD is a director for CapTech Consulting, a management consulting and
software development firm of 375 consultants based in Richmond, Va., with offices in
Philadelphia, Charlotte, and Washington, D.C. Kevin was a Microsoft C# MVP for years
until moving into the Windows Azure MVP group. Although his head is in the clouds
these days, Kevin still considers himself to be a languages guy, focusing most of his
attention on functional and dynamic languages like F# and Python. 

 Kevin has served as a leader for the Richmond Code Camp (http://richmondcode-
camp.org), the Richmond .NET User Group, the Richmond SQL Server User Group,
the Richmond Software Craftsmanship Group, and the Mid-Atlantic Developer Expo
(http://madexpo.us). He also speaks regularly at conferences around the Midwest
and Mid-Atlantic states, directing most of his attention these days to teaching pro-
gramming and robotics to children. 

 Kevin taught computer programming language courses in the Virginia Commu-
nity College system for more than a decade, but gave that up in 2011 to run for office
and become elected to his county’s K-12 School Board. You can follow Kevin at http://
twitter.com/KevinHazzard or befriend him at http://facebook.com/wkhazzard to stay
in touch.

www.manning.com/Metaprogrammingin.NET
www.manning.com/Metaprogrammingin.NET
www.manning.com/Metaprogrammingin.NET
http://metadotnetbook.codeplex.com
http://richmondcodecamp.org
http://richmondcodecamp.org
http://madexpo.us
http://twitter.com/KevinHazzard
http://twitter.com/KevinHazzard
http://facebook.com/wkhazzard


ABOUT THIS BOOKxxii
JASON BOCK is a principal lead consultant for Magenic (www.magenic.com) and a
Microsoft C# MVP. He’s worked on a number of business applications using a diverse
set of substrates and languages, such as C#, .NET, and Java. He’s the also the author of
Applied .NET Attributes (Apress, 2003), CIL Programming: Under the Hood of .NET (Apress,
2002), and Visual Basic 6 Win32 API Tutorial (Wrox, 1998). He’s written numerous arti-
cles on software development, has presented at a number of conferences and user
groups, and is a leader of the Twin Cities Code Camp (www.twincitiescodecamp.com).
Jason holds a master’s degree in electrical engineering from Marquette University.
Visit his website at www.jasonbock.net.

www.magenic.com
www.twincitiescodecamp.com
www.jasonbock.net


about the cover illustration
The figure on the cover of Metaprogramming in .NET is captioned a “Man from Japo-
des.” The Japodes, also called Lapydes or Giapidi, were an ancient people who dwelt
north of and inland from Liburnia, a region on the northeastern Adriatic coast in
what is now Croatia. This illustration is taken from a recent reprint of Balthasar
Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs
published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–
1815) was an Austrian physician and scientist who spent many years studying the bot-
any, geology, and ethnography of many parts of the Austrian Empire, as well as the
Veneto, the Julian Alps, and the western Balkans, inhabited in the past by peoples of
many different tribes and nationalities. Hand-drawn illustrations accompany the many
scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of Alpine and Balkan regions just 200 years ago. This was
a time when the dress codes of two villages separated by a few miles identified people
uniquely as belonging to one or the other, and when members of an ethnic tribe,
social class, or trade could be easily distinguished by what they were wearing. Dress
codes have changed since then and the diversity by region, so rich at the time, has
faded away. It is now often hard to tell the inhabitants of one continent from another
and the residents of the picturesque towns and villages on the Adriatic coast are not
readily distinguishable from people who live in other parts of the world.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.
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Part 1

Demystifying
metaprogramming

What is metaprogramming? What does it look like? What does it mean to
use metaprogramming? Part 1 (chapters 1 and 2) gives you a tour of the founda-
tions of metaprogramming.

 In chapter 1 you’ll see simple, clear examples that explain what metapro-
gramming is and why it’s beneficial to understand what it’s about.

 Chapter 2 covers the need for reflection and its practical uses. Numerous
uses of metaprogramming via the Reflection API will be presented throughout
the chapter.





Metaprogramming concepts
The basic principles of object-oriented programming (OOP) are understood by
most software developers these days. For example, you probably understand how
encapsulation and implementation-hiding can increase the cohesion of classes.
Languages like C# and Visual Basic are excellent for creating so-called coarsely
grained types because they expose simple features for grouping and hiding both
code and data. You can use cohesive types to raise the abstraction level across a
system, which allows for loose coupling to occur. Systems that enjoy loose cou-
pling at the top level are much easier to maintain because each subsystem isn’t as
dependent on the others as they could be in a poor design. Those benefits are
realized at the lower levels, too, typically through lowered complexity and greater
reusability of classes. In figure 1.1, which of the two systems depicted would likely
be easier to modify?

 Without knowing what the gray circles represent, most developers would pick
the diagram on the right as the better one. This isn’t even a developer skill. Show the
diagrams to an accountant and she’ll also choose the one on the right as the less

In this chapter
■ Defining metaprogramming
■ Exploring examples of metaprogramming
3



4 CHAPTER 1 Metaprogramming concepts
complex. We recognize simplicity when we see it. Our challenge as programmers is in
seeing the opportunities for simplicity in the systems we develop. Language features
like encapsulation, abstraction, inheritance, data-hiding, and polymorphism are great,
but they only take you part of the way there.

The metaprogramming style of software development shares many of the goals of tra-
ditional OOP. Metaprogramming is all about making software simpler and reusable.
But rather than depending strictly on language features to reduce code complexity or
increase reusability, metaprogramming achieves those goals through a variety of librar-
ies and coding techniques. There are language-specific features that make metapro-
gramming easier in some circumstances. For the most part, however, metaprogramming
is a set of language-independent skills. We use C# for most of the examples in this
book, but don’t be surprised when we toss in a bit of JavaScript or F# here and there
when it helps to teach an idea at hand.

 If you know a little bit about metaprogramming, you may scoff at the idea that
metaprogramming reduces complexity. It’s true that some types of metaprogram-
ming require a deeper understanding of tools that may be out-of-sight from your per-

The I in SOLID
Along the way, we’ll refer to some of the five SOLID (single responsibility, open-
closed, Liskov substitution, interface segregation, and dependency inversion) princi-
ples of object-oriented design (OOD). While we’re thinking about coupling and cohe-
sion, it’s a good time to discuss the “I” in SOLID—the interface segregation principle
(ISP). The ISP says that many client-specific interfaces are better than one general-
purpose interface.

This seems to contradict the notion that high cohesion is always a good thing. If you
study the ISP along with the other four SOLID principles, though, you’ll discover that
it speaks to the correctness of the middle ground in software development. The dia-
gram on the left in figure 1.1 may represent absurdly tight coupling and low cohesion.
The one on the right may embody the other extreme. The ISP tells us that there may
be an unseen middle design that’s best of all.

Figure 1.1 Which 
system is easier 
to change?
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spective today. You may have been told in the past that to do metaprogramming, you
must understand how compilers work. Many years ago that was largely true, but today
you can learn and use highly effective metaprogramming techniques without having
to know much at all about compilers. After all, complexity is in the eye of the
beholder, as the saying goes. As perceived complexity from the end user’s standpoint
goes down, internal complexity of the design often goes up. Complexity reduction
when metaprogramming follows the same rules. To achieve simplicity on the outside,
the code on the inside of a metaprogramming-enabled component typically takes on
added responsibilities.

 For example, so-called Domain-Specific Languages (DSLs) are often built with
metaprogramming tools and techniques. DSLs are important because they can funda-
mentally change the way that a company produces intellectual property (IP). When a
DSL enables a company to shift some of its IP development from traditional program-
mers to analysts, time to market can be dramatically reduced. Well-designed DSLs can
also increase the comprehension of business rules across the enterprise, allowing peo-
ple into the game from other roles that have been traditionally unable to participate
in the process. A flowcharting tool that produces executable code is a good example
of such a DSL because it enables business stakeholders to describe their intent in their
own vocabulary.

 The trade-off is that DSLs are notoriously difficult to design, write, test, and sup-
port. Some argue that DSLs are much too complex and not worth the trouble. But
from the consumer’s vantage point, DSLs are precious to the businesses they serve pre-
cisely because they lower perceived complexity. In the end, isn’t that what we do for a
living? We make difficult business problems seem simple. As you study metaprogram-
ming throughout this book, keep that thought in mind.

NOTE DSLs in Action by Debasish Ghosh (www.manning.com/ghosh) and
DSLs in Boo by Oren Eini writing as Ayende Rahien (www.manning.com/
rahien) are both excellent choices if your goal is to learn how to create full-
featured DSLs.

At times, you may struggle as you try to learn so many new things at once. There will
be enough promise in each new thing you learn to prove that the struggle is worth-
while. In the end, you’ll have many new tools for fighting software complexity and for
writing reusable code. As you begin to put metaprogramming to work in your proj-
ects, others will study what you’ve done. They’ll marvel at the kung fu of your
metaprogramming skills. Soon they’ll begin to emulate you, and, as they say, imitation
is the sincerest form of flattery.

 Let’s begin by defining what metaprogramming is. Then we’ll dive into a few inter-
esting examples to show how it’s used.

www.manning.com/ghosh
www.manning.com/rahien
www.manning.com/rahien
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1.1 Definitions of metaprogramming
The classic definition for a metaprogram is “a computer program that writes new com-
puter programs.” This sounds a lot like the definition of a compiler. A compiler for a
programming language like C# could be thought of as the ultimate metaprogram,
because its only job is to produce other programs from source code. But to call the C#
compiler a metaprogram is a stretch. Unstated in the definition of a traditional com-
piler is the idea that the execution step is fixed in time, and the existence of the com-
piled outputs are somewhat unseen by end users. Also, metaprogramming techniques
are clearly different because they’re almost always used to deal with some sort of ever-
changing stimulus.

 There may be semistructured documents that need parsing on the fly. You may
need a way to express trading restrictions from your partners that change daily. Data-
base schemas change from time to time, and you may need a way to make your pro-
grams adapt gracefully. All of these problems are perfect for metaprogram-based
solutions. They don’t require compilers in the traditional sense. They do require the
flexibility that a compiler affords to adapt to situations at hand.

 The C# compiler in its current form is almost always invoked by programmers dur-
ing a build process to produce a new program. In the near future, that will be chang-
ing with the release of Microsoft’s Roslyn (code name) tools. Roslyn opens the black
box of the C# and VB compilers to make them available before, during, and after the
deployment of your applications. When that happens, we expect to see Microsoft’s
compilers used in many metaprogramming scenarios.

DEFINITION Metaprogramming may be among the most misunderstood terms
in computer jargon. It’s certainly one of the more difficult to define. To make
learning about it easier, each time you see the word metaprogramming in this
book, try to think of it as after-programming or beside-programming. The
Greek prefix meta allows for both of those definitions to be correct. Most of
the examples in this book demonstrate programming after traditional compi-
lation has occurred, or by using dynamic code that runs alongside other pro-
cesses. For each example, ask yourself which kind of metaprogramming
you’re observing. Some of the more in-depth examples demonstrate both
kinds simultaneously.

Also inherent in the classic definition of metaprogramming is the notion that the
code-generation process is embedded within an application to perform some type
of dynamic processing logic. The word dynamic gets tossed around a lot in discus-
sions about metaprogramming because it’s often used to add adaptive interfaces to
a program at runtime. For example, a dynamic XML application might read XML
Schema Definitions (XSD) at runtime to construct and compile high-performance
XML parsers that can be used right away or saved for future use. Such an applica-
tion would perform well and be highly adaptable to new types of XML without the
need for recompilation.
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 Another common definition for metaprogramming is “a computer program that
manipulates other programs at runtime.” Scripting languages often fit this mold, pro-
viding the simple but powerful tools for doing metaprogramming. A program that
manipulates another program doesn’t have to be a scripting language. The dynamic
keyword in C# can be used to emit a kind of manipulating code into a compiled appli-
cation, like this:

dynamic document = DocumentFactory.Create();
document.Open();

Using the dynamic keyword, the call to the Open() method shown here is embedded
into a bit of C# code known as a CallSite. We dive into CallSites in great detail
later in chapter 8. For now, all you need to understand is that what appears to be a
type-safe call to the Open() method in the document object is implemented through
C#’s runtime binder using the literal string "Open." When you dig around in the
Intermediate Language (IL) emitted by the compiler for the preceding snippet, you
may be surprised to see the literal string "Open" passed to the binder to invoke the
method. The C# code certainly didn’t look like a scripting language, but what was
emitted certainly has that flavor. Through the various runtime binders for interfacing
with plain old CLR objects (POCO), Python scripts, Ruby scripts, and COM objects, C#
CallSites exhibit the second definition of metaprogramming rather well. In chap-
ter 8, we show you how to interface with all those languages and object types using
C# dynamic typing.

 Writing new programs at runtime and manipulating programs at runtime aren’t
mutually exclusive concepts. Many of the metaprogramming examples you’ll encoun-
ter in this book do both. First, they may use some sort of code-generation technique to
create and compile code on the fly to adapt to some emerging set of circumstances.
Next, they may control, monitor, or invoke those same programs to achieve the
desired outcome.

More metaprogramming jargon
There are a few more terms that you may encounter when you start reading articles
and other books on metaprogramming. You may run across the term metalanguage
to refer to the language used in the original program (the one that’s writing the others).
We prefer the term metaprogram because it’s more generic. Remember that metapro-
gramming is largely a language-independent craft.

Other terms you’re likely to hear are target language or object language, referring to
the code produced by the metaprogram. Both those terms imply that there’s an inter-
mediate language that the metaprogrammer cares about in the process. As you’ll
soon discover, the output of a .NET metaprogram could be Common Intermediate
Language (CIL) which, for all intents and purposes, you can regard as native code. In
those cases, there’s no target language in the classical sense.
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1.2 Examples of metaprogramming
For most people, the best way to learn is by example. Let’s examine a few examples of
metaprogramming in action. We begin with the simplest of metaprogramming con-
cepts: invoking bits of dynamically supplied JavaScript at runtime. This prototype will
give you an appreciation for the flexibility that metaprogramming can add to a web
application, even though the example is contrived for simplicity.

 Next, we look at how to use introspective interfaces to drive application behavior at
runtime. Through it you’ll learn how to do simple reflection to peer into objects at run-
time. But the real purpose of that example is to help you understand the performance
considerations when deciding to metaprogramming-enable an interface to make it
friendlier and more adaptive at runtime.

 The third example in this section concerns code generation, arguably the classic
definition of metaprogramming. We show you two runtime types of code generation:
creating source code from a so-called object graph assembled by hand and creating
executable IL from a lambda expression. For the second type, we let the C# compiler
do the heavy lifting first. Then we build the lambda expressions by hand before turn-
ing them into runnable code.

 The last example in this section demonstrates how you can use the dynamic fea-
tures of the C# 4 compiler to do some fairly interesting metaprogramming with little
effort. You’ll learn a little bit about how the CallSite and CSharpRuntimeBinder
types work. The real goal of that example, though, is to highlight some of the best
practices around using dynamic types in C#.

 The examples here are designed to provide basic prototypes that you’ll need to learn
faster when reading future chapters. Also, by examining several simple approaches to
metaprogramming in rapid succession, we hope to give you a more holistic view of this
important programming paradigm.

1.2.1 Metaprogramming via scripting
There are many dynamic programming languages. Some of them are also considered
to be scripting languages. Languages like Python or Ruby would work well for our first
example because they have clean, easy-to-understand syntaxes and they’re loaded with
great metaprogramming capabilities. But rather than starting with one of those lan-
guages, which could steepen the learning curve if you don’t know them, let’s begin, in
the following listing, with the two most popular languages in the world.

<!DOCTYPE html>
<html>

<head>
  <script type="text/javascript">
  function convert() {
    var fromValue = eval(fromVal.value);
    toVal.innerHTML = eval(formula.value).toString();
  }

Listing 1.1 Dynamic Number Conversion (HTML and JavaScript)
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  </script>
</head>
<body>
  <span>fromValue:</span>&nbsp;
  <input id="fromVal" type="text"/><br/>

       <span>formula:</span>&nbsp;
  <input id="formula" type="text"/><br/>

       <input type="button" onclick="javascript:convert();" 
    value="Convert" /><br/>

       <span>toValue:</span>&nbsp;<span id="toVal"></span>
</body>

</html>

The admittedly unattractive web page created by this
markup demonstrates a core metaprogramming concept.
After locating the DynamicConversion.htm file in the
book’s sample source code, load it up and enter some val-
ues into the fromValue and formula fields, as shown in fig-
ure 1.2. Be sure to use the token fromValue somewhere in
the formula to refer to the numeric value that you type
into the fromValue field.

 Figure 1.2 shows a calculation that multiplies the user-supplied fromValue by 25.4,
which is the simple formula for converting inches to millimeters. Typing in a from-
Value such as 3.25 and clicking Convert shows that 3.25 inches is equivalent to 82.55
millimeters. There are two bits of JavaScript code in this web page that make it work: a
function called convert() and the onclick event handler for the Convert button,
which invokes the convert() function when the button is clicked. In the convert()
function, the HTML Document Object Model (DOM) is used to fetch the value from
the first text box on the page, the one named fromVal. The string is evaluated by the
JavaScript DOM by passing it to the aptly-named eval() function:

var fromValue = eval(fromVal.value);

This is a neat trick, but how does it work? When we typed the string "3.25" into the
fromVal element, we weren’t thinking of writing JavaScript per se. We were trying to
express a numeric value. But the eval() function did interpret our input as JavaScript
because that’s all it can do. The eval() function gives you direct access to JavaScript’s
compiler at runtime, so the string "3.25" compiled as JavaScript code is treated as the
literal value for the floating point number we know as 3.25. That makes sense. The
parsed literal number is then assigned to a local variable defined in the script named
fromValue. The next line of code in the convert() function uses eval() once again:

toVal.innerHTML = eval(formula.value).toString();

The string "fromValue*25.4" looks a bit more like a script than the first input
because it contains a mathematical expression. The result of executing that script is a
number that’s converted into a string and written back to the web page for the user to

Figure 1.2
DynamicConversion.htm—
converting inches to 
millimeters
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see. Once again, in that single line of code, you can see the HTML DOM and the
JavaScript DOM working together to accomplish what’s required.

 The bit of metaprogramming lurking in this example is the way that the pre-
defined JavaScript variable called fromValue is referenced within the formula pro-
vided by the user. The token fromValue in the user-supplied formula is somehow
bound by the second eval() statement to the value of the predefined variable in the
DOM’s local execution scope. This kind of late binding is fairly common in metapro-
gramming. With JavaScript, writing a script that can refer to objects defined in the
larger execution context, otherwise called the script scope, is simple to do. When you
use libraries like jQuery or the Reactive Extensions for JavaScript (RxJS) for the first
time, how they can do so much in so few lines of code seems utterly magical. The
magic lies in the metaprogramming foundation upon which JavaScript was conceived,
which we examine at the end of this chapter. If JavaScript didn’t expose its compiler in
this ingeniously simple way, neither jQuery nor RxJS would exist.

 Defining the local variable fromValue is a convention
in the design of this particular web page. Rather than
using a variable with a specific name, you could inject
your own variable into the local scope and use it instead,
as shown in figure 1.3.

 As you can see in figure 1.3, the value in the pre-
defined fromValue variable is no longer being used in
the user-supplied formula. This example takes advantage
of the fact that when the first eval() statement runs in
the convert() function, any JavaScript code can be provided to the compiler. A new
variable named otherValue is injected into scope which the formula references
instead. This side effect functions properly because the inches to millimeters calcula-
tion produces the correct output.

 If you can create whole new objects using the
JavaScript DOM, who knows what else you might be
able to reference from a user-supplied script at run-
time? You might have access to some of JavaScript’s
built-in libraries, for example. Let’s give that a try. The
example shown in figure 1.4 uses JavaScript’s built-in
Math class to calculate the tangent value at 45 degrees.
In case you don’t remember your college trigonome-
try, the tangent line on a circle at 45 degrees should have a slope of 1.

 The tan() function needs radians, not degrees. The formula first converts the
degrees supplied by the user to radians using the constant for pi from JavaScript’s
Math class. In JavaScript, getting the constant for pi is as easy as pie, as the saying goes.
Then the Math class is used again to compute the tangent value using the trigonomet-
ric tan() function. The result shows a slight rounding error, but it’s pretty close and
neatly illustrates the idea of using JavaScript’s libraries from a dynamic script.

Figure 1.3
DynamicConversion.htm—
injecting variables into 
JavaScript

Figure 1.4
DynamicConversion.htm—using 
JavaScript’s Math class 
dynamically
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 As you can see, the name chosen for the convert() function is wearing a bit
thin as you begin to realize that this number converter can become pretty much
whatever the user wants. For example, pass a single-quoted string for the from-
Value and invoke one or more JavaScript strings in the formula to manipulate it.
As you’ll observe, the user-supplied input doesn’t have to be a number at all. So it
goes with metaprogramming in general. You’ll often find that the metaprogramming-
enabled interfaces you encounter seem simple from the outside. Beneath the sur-
face, however, a lot of interesting and useful functionality is often waiting to
be discovered.

 Having studied the important metaprogramming concepts of late binding and
runtime compilation, let’s turn our attention to another popular technique that’s
used throughout the .NET Framework Class Library (FCL) to make code easier to write
and comprehend.

1.2.2 Metaprogramming via reflection

The surface simplicity that many metaprogramming-enabled interfaces expose is
often quite deliberate. As you’ll see throughout this book, metaprogramming is com-
monly used to hide complexity by providing natural interfaces to complicated pro-
cesses. Let’s take a look at one of the simplest uses of this idea. Imagine that a ListBox
control exists named listProducts. Your goal is to load the control with a list of (you
guessed it) Product objects from a data context. Each Product contains a string prop-
erty named ProductName and an integer property named ProductID. You want
ProductName to be visible to the user, and when they click an item in the ListBox, you
want the associated ProductID to be the selected value. Since .NET 1.0, the code to do
that has been this simple:

listProducts.DisplayMember = "ProductName";
listProducts.ValueMember = "ProductID";
listProducts.DataSource = DataContext.Products;

In English, this code might be read as, “Bind these Product objects to this ListBox,
displaying each ProductName to the user and setting the ProductID for each item as
the selectable backing value.” Notice how the declarative quality of the code makes it
easy to understand what’s going on. In fact, the C# code and the English rendering of
it are quite similar.

 You may have written code that does data binding as we’ve described dozens of
times, but have you ever stopped to think about what’s going on behind the scenes?
How can strings be used in a statically typed language like C# to locate and bind
property values by name at runtime? After all, the strings assigned to the Display-
Member and ValueMember properties could have been variables instead of string liter-
als. The treatment of them by Microsoft’s data-binding code must be performed
completely at runtime.

 The answer is based on something known as the reflection application program-
ming interface (API), which can illustrate the inner workings of a class at runtime,
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hence the name. Microsoft’s ListBox data-binding code uses reflection to use bits of
metadata left behind by the compiler, as shown in the following listing.

public System.Collections.IEnumerable DataSource
{
  set
  {
    foreach (object current in value)
    {
      System.Reflection.PropertyInfo displayMetadata =
        current.GetType().GetProperty(DisplayMember);
      string displayString =
        displayMetadata.GetValue(current, null).ToString();
      // ...

      System.Reflection.PropertyInfo valueMetadata =
        current.GetType().GetProperty(ValueMember);
      object valueObject =
        valueMetadata.GetValue(current, null);
      // ...
    }
  }
}

Keep in mind that Microsoft’s real data binding code is quite a bit more optimized
than this. As each element in the DataSource collection is iterated over, its type is
obtained using the GetType() method, which is inherited from System.Object.

NOTE If you have any doubts about how fundamental reflection is in the
.NET ecosystem, think for a moment about the significance that the Get-
Type() method is included in System.Object. The base class for all .NET
types is quite sparsely populated yet the GetType() method, which is critically
important for metadata discovery and metaprogramming, was deemed impor-
tant enough to be exposed from every single .NET object.

Declarative programming
In 1957, the FORTRAN programming language appeared—the great-grandparent of
all the so-called imperative programming languages. In English, the word imperative
is used to mean command or duty. FORTRAN and its descendants are called impera-
tive languages because they give the computer commands to fulfill in a specific
order. Imperative languages are good for instructing computers how to do work
using specific sequences of instructions. The data binding example at hand hints
at the power of a programming style called declarative that aims to move you from
demanding how the computer should work to declaring what you want done instead.
You can express what you want, and Microsoft’s data-binding code figures out how
to do it for you.

Listing 1.2 DataSource reflection logic (C#)
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The System.Type object returned from GetType() has a method called GetProperty()
that returns a PropertyInfo object. In turn, PropertyInfo has a method defined
within it called GetValue() that’s used to obtain the runtime value of a property on an
object that implements the metadata described by the PropertyInfo.

 In the System.Reflection namespace, you may be interested in several of these
Info classes for expressing the various types of metadata, such as FieldInfo, MethodInfo,
ConstructorInfo, PropertyInfo, and so on. As seen in listing 1.2, these classes are
categorical in nature. Once you have an Info class in hand, you must supply an
instance of the type you’re interested in to do anything useful. In listing 1.2, the cur-
rent Product reference in the loop is passed to the GetValue() method to fetch the
instance values for each targeted property. Now that you know the Info classes in
reflection are categorical, you may be thinking about reusing them to optimize the
data binding code. Now that’s thinking like a metaprogrammer! The following listing
shows an optimized version of the code.

public IEnumerable DataSource {
  set {
    IEnumerator iterator = value.GetEnumerator();
    object currentItem;
    do {
      if (!iterator.MoveNext())
        return;
      currentItem = iterator.Current;
    } while (currentItem == null);

    PropertyInfo displayMetadata =
      currentItem.GetType().GetProperty(DisplayMember);
    PropertyInfo valueMetadata =
      currentItem.GetType().GetProperty(ValueMember);

    do {
      currentItem = iterator.Current;
      string displayString =
        displayMetadata.GetValue(currentItem, null).ToString();
      // ...

      object valueObject =
        valueMetadata.GetValue(currentItem, null);
      // ...
    } while (iterator.MoveNext());
  }
}

The first portion of the optimized DataSource data binding code shown in listing 1.3
iterates until it finds a non-null current item. This is necessary because you can’t
assume that the collection supplied as the DataSource has all non-null elements. The
first elements could be empty. Once an element is located, some of its type metadata is
cached for later use. Then the iteration over the elements uses the cached Property-
Info objects to fetch the values from each element. As you can imagine, this is a more

Listing 1.3 Optimized DataSource binding logic (C#)
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efficient approach because you don’t have to perform the costly metadata resolution
for every single object in the collection. Using caching and other optimizations to
improve runtime performance is a common metaprogramming practice.

For brevity, Microsoft’s DataSource binding implementation isn’t shown here. It
includes many interesting optimizations you can learn from. When you’re ready, use
the skills you pick up in chapter 2 to introspect into Microsoft’s real data-binding code.
You’ll learn a lot from that exercise.

 Next, we turn our attention to the idea of code generation, which is how most
developers define metaprogramming.

1.2.3 Metaprogramming via code generation

So far we’ve looked at scripting and reflection as tools for metaprogramming. Now let’s
focus on generating new code at runtime. To ease into the subject, we focus on two of
the simpler approaches to code generation using the Microsoft .NET Framework:

■ Generating source code with the CodeDOM
■ Generating IL with expression trees

To be as illustrative as possible, the approaches are quite different, but the outcomes
only vary by the fact that one approach produces source code text, and the other
emits new functions that are immediately executable.

CREATING SOURCE CODE AT RUNTIME WITH THE CODEDOM
Document-oriented programming models are common in software design because
the document is such a powerfully simple metaphor for organizing information. You
may have used the HTML DOM and the JavaScript DOM to do web development, for
example. Microsoft has included something known as the CodeDOM in the .NET
Framework. As its name implies, the CodeDOM allows you to take a document-ori-
ented approach to code generation.

 The CodeDOM comes from the early days of .NET and reflects some of the most
primitive thinking about creating a standardized code-generation system for Micro-
soft’s platform. The term primitive isn’t pejorative in this case because the CodeDOM,

The magic string problem
One of the drawbacks of any metaprogramming approach that uses literal strings to
drive application behavior at runtime is the fact that compile-time verification by com-
pilers can’t be performed. What would happen if you misspelled the DisplayMember
value as "ProductNane"? You would discover that error during testing quickly. But
what if you allowed the user to specify that string through an application setting, or
worse, via a query parameter? Malicious users could begin probing for so-called
magic strings that could be used to exploit your code by injecting new behaviors. An
entire class of related exploits known as SQL injection attacks still plagues poorly
designed websites, despite the fact that fixing the problem takes only a few minutes.
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despite the fact that Microsoft hasn’t focused its attention there in recent years, is still
an elegant code-generation system that many metaprogrammers still enjoy using. The
CodeDOM uses a so-called code graph-based approach to creating code on the fly.

 For all of the CodeDOM snippets shown in this section, the following namespace
imports are required:

using System;
using System.IO;
using System.Text;
using System.CodeDom;
using System.Diagnostics;
using System.CodeDom.Compiler;

To understand how the CodeDOM functions as a source code generator, let’s begin by
exploring which .NET programming languages the CodeDOM supports. The CodeDom-
Provider class is one of the central classes in the System.CodeDom.Compiler
namespace and it includes a handy, static method called GetAllCompilerInfo(),
which returns an array of CompilerInfo objects. Each CompilerInfo object has a
method called GetLanguages() you can use to obtain the list of tokens that can be
used to instantiate the language provider, like this:

foreach (System.CodeDom.Compiler.CompilerInfo ci in
  System.CodeDom.Compiler.CodeDomProvider.GetAllCompilerInfo())
{
  foreach (string language in ci.GetLanguages())
    System.Console.Write("{0}     ", language);
  System.Console.WriteLine();
}

Running this snippet in a console application or in LINQPad generates the list of syn-
onyms for each of the installed language providers in the system. Figure 1.5 shows
LINQPad acting as a sort of C# scratchpad to execute this bit of code.

 As you can see in the LINQPad output, five language providers are installed on our
system: C#, Visual Basic, JavaScript, Visual J#, and Managed C++. Each provider allows
for the use of three or four synonyms for instantiating them. We come back to pro-
vider instantiation near the end of this example.

 Notice that F# isn’t among the supported languages. Microsoft hasn’t been putting
much effort into the CodeDOM in the last several years. There have been small
enhancements and corrections in recent releases of the .NET Framework, but don’t
expect to see whole new language providers appear, for example. Microsoft still uses
the CodeDOM heavily in its own major subsystems. The Text Templating Transforma-
tion Toolkit (T4) engine and the ASP.NET page generator still depend on the Code-
DOM for code generation. Going forward, however, Microsoft will almost certainly
continue to focus its research and development dollars for code generation in tools
like the Roslyn API.

 Next, let’s take a look at dynamically generating a class. The CodeDOM uses the
concept of a code graph to assemble .NET objects programmatically. As a C# source
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file might start with the declaration of a namespace, a CodeDOM graph typically
begins with the creation of a System.CodeDom.CodeNamespace object. The Code-
Namespace serves as the root of the graph. Going back to the source code analogy,
the curly braces following a namespace declaration in C# are used to contain the
types that will be defined within it. The CodeNamespace type in the CodeDOM
behaves the same way. It’s a container in which various types and code can be
defined. Before jumping into the code sample, let us take a moment to describe
how the code works. Here are the steps:

1 Create a CodeNamespace that is the CodeDOM class that represents a CLR (Com-
mon Language Runtime) namespace. We’ll call our example namespace Meta-
World to make it memorable.

2 Create a CodeNamespaceImport to import the System namespace in the gener-
ated source code. These are like using declarations in C# or Import declara-
tions in Visual Basic.

LINQPad: A tool that every .NET developer needs
It’s not often that we speak categorically about development tools. As polyglot pro-
grammers, we admire most development tools in a somewhat egalitarian fashion.
Once in a while though, a tool comes along that’s so valuable we feel we must rec-
ommend it to every developer we meet. LINQPad, written by Joe Albahari, is such a
tool. It can be used as a scratchpad for your .NET code. As its name implies, it’s also
good at helping to write and debug LINQ queries. As of this writing, you can freely
download LINQPad from http://LINQPad.net. If you don’t already have it, we encour-
age you to download it and begin exploring right away.

Figure 1.5 Enumerating the synonyms for the CodeDOM language providers using LINQPad

http://LINQPad.net
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3 Create a CodeTypeDeclaration named "Program" for the class that will be gen-
erated. This is like using the class keyword in your code to declare a new type.

4 Create a CodeMemberMethod named "Main" that will serve as the entry point func-
tion in the Program class. The method object will be inserted into the Program
class. This follows how source code is written. The Program class is defined in
the namespace, and the Main function is defined in the Program class.

5 Create a CodeMethodInvokeExpression to call "Console.WriteLine" with a
CodePrimitiveExpression parameter of “Hello, world!”. This is the hardest
part to understand because of the nested way in which the code is structured.

You can probably see where this is going. We’ll be dynamically generating the time-
honored “Hello, world!” program with the code shown in the following listing.

partial class HelloWorldCodeDOM
{
  static CodeNamespace BuildProgram()
  {
    var ns = new CodeNamespace("MetaWorld");
    var systemImport = new CodeNamespaceImport("System");
    ns.Imports.Add(systemImport);
    var programClass = new CodeTypeDeclaration("Program");
    ns.Types.Add(programClass);
    var methodMain = new CodeMemberMethod
    {
      Attributes = MemberAttributes.Static
      , Name = "Main"
    };
    methodMain.Statements.Add(
      new CodeMethodInvokeExpression(
        new CodeSnippetExpression("Console")
        , "WriteLine"
        , new CodePrimitiveExpression("Hello, world!")
      )
    );
    programClass.Members.Add(methodMain);
    return ns;
  }
}

NOTE In chapter 4, we show in depth how to generate code dynamically
using the CodeDOM. In the small example shown here, we used the Code-
SnippetExpression for simplicity. Using that CodeDOM object can lock you
into producing code for one specific language, which often defeats one pur-
pose for using the CodeDOM to begin with.

The BuildProgram() method shown in listing 1.4 encapsulates the script outlined ear-
lier, returning a CodeNamespace object to the caller. You haven’t yet rendered the
source code. That comes next. The CodeNamespace object can be used by a CodeDom-
Provider to generate source code. Now you have to use one of the five language pro-
viders installed on our computer to do the work. The example in listing 1.5 performs
the following steps to do that:

Listing 1.4 Assembling the “Hello, world!” program with the CodeDOM (C#)
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1 Create a CodeGeneratorOptions object to instruct the chosen compiler how
to behave. You can control indentation, line spacing, bracing, and more with
this class.

2 Create a StringWriter that the language provider will stream the generated
source code into. An attached StringBuilder holds the generated source code.

3 Create a C# language provider and invoke the GenerateCodeFromNamespace
method, passing the CodeNamespace constructed by the BuildProgram()
method shown in listing 1.4.

Once completed, the StringBuilder will contain the source code you’re after. The
example program dumps the emitted source code to the console. But it could as easily
be written to disk.

partial class HelloWorldCodeDOM
{
  static void Main()
  {
    CodeNamespace prgNamespace = BuildProgram();
    var compilerOptions = new CodeGeneratorOptions()
    {
      IndentString = "  ",
      BracingStyle = "C",
      BlankLinesBetweenMembers = false
    };
    var codeText = new StringBuilder();
    using (var codeWriter = new StringWriter(codeText))
    {
      CodeDomProvider.CreateProvider("c#")
        .GenerateCodeFromNamespace(
          prgNamespace, codeWriter, compilerOptions);
    }
    var script = codeText.ToString();
    Console.WriteLine(script);
  }
}

Compile and run this little code-generator program to see the nicely formatted C#
program it produces in the following listing.

namespace MetaWorld
{
  using System;

  public class Program
  {
    static void Main()
    {
      Console.WriteLine("Hello, world!");
    }
  }
}

Listing 1.5 Generating source code from a CodeNamespace (C#)

Listing 1.6 CodeDOM-generated C# source code for “Hello, world!”
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Generating C# source code is easy, isn’t it? But what if you wanted to generate man-
aged C++ source code for the same program? You might be surprised at how simple
that change is. Modify the string that reads "c#" in the call to CodeDomProver
.CreateProvider() in listing 1.5 to read "c++", and the metaprogram will generate
C++ code instead. The following listing shows the C++ version of the dynamically gen-
erated source code after making that small change.

namespace MetaWorld {
  using namespace System;
  using namespace System;
  ref class Program;

  public ref class Program
  {
    static System::Void Main();
  };
}
namespace MetaWorld {
  inline System::Void Program::Main()
  {
    Console->WriteLine(L"Hello, world!");
  }
}

The output of the slightly modified program is nicely formatted source code written
in Managed C++, which you could save to disk for compilation in a future build step,
for example. According to the output from the LINQPad run shown in figure 1.5, you
could also have used the synonyms "mc" and "cpp" to instantiate the C++ language
provider. The remaining providers for Visual Basic, JavaScript, and Visual J# are avail-
able to create well-formatted code in those languages, too. Give them a try to see that
switching the output language when generating source code from a CodeDOM code
graph is almost effortless.

 We hope this example reveals how straightforward it is to generate source code
at runtime. Yet we haven’t answered the central question about why you would want
to do such a thing. Why would you ever want to generate source code? Here are
some ideas taken from real-world projects that have used code-generation tech-
niques successfully:

■ Creating entity classes from database metadata for an object-relational mapping
(ORM) tool during a build process.

■ Automating the generation of a SOAP client to embed features in the proxy
classes that aren’t exposed through Microsoft’s command-line tools.

■ Automating the generation of boundary test cases for code based on simple
method parameter and return type analysis.

The list goes on and on. Whatever your reasons for wanting to generate source code,
the CodeDOM makes it fairly easy. The CodeDOM isn’t the only way to generate source
code in the .NET Framework, but once you become comfortable with the classes in the

Listing 1.7 CodeDOM-generated C++ source code for “Hello, world!”
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System.CodeDom namespace, it’s not a bad choice. The preceding example is deliber-
ately simple. When you’re ready to dive deeper into the CodeDOM, see chapter 4,
which is dedicated to the CodeDOM and which shows many advanced metaprogram-
ming techniques with rich, reusable examples.

 Now that we’ve delved into expressing code as data, let’s turn our attention to a
more recently introduced way to do that in the .NET Framework.

CREATING IL AT RUNTIME USING EXPRESSION TREES

One of the most common metaprogramming techniques is expressing code as data.
That may sound a bit odd at first. The CodeDOM example in the last section described
code as a set of data structures to emit source code. An arguably more interesting
metaprogramming practice involves compiling the data that represents a body of code
into an assembly that can be saved to disk or executed immediately by the running
application. This cuts out the step of having to compile intermediate source code files.
Better still, if the code graph were somehow independent of the machine architecture,
it could be serialized to a remote computer to be compiled and executed there. The
remote computer need not be using the same operating system or even the same pro-
cessor architecture, as long as it has the means for compiling the serialized data struc-
ture. Those types of in-memory compilation scenarios are quite a bit more common in
metaprogramming than the ones for generating source in an intermediate step.

 To demonstrate this idea of in-memory compilation, the code graph must some-
how be assembled at runtime into IL. As it turns out, the CodeDOM classes you exam-
ined can compile code graphs and blocks of raw source code written in one of the
supported languages into .NET assemblies. Those dynamically generated assemblies
can be written to disk for future use or exposed as in-memory types for immediate use
by the currently executing application. There are also classes in the Reflection.Emit
namespace that are well-suited for IL generation. But both the CodeDOM and
Reflection.Emit approaches are a bit too complex for an introductory chapter
designed to bring developers up to speed who may be learning about metaprogram-
ming for the first time. Both the CodeDOM and Reflection.Emit approaches are
important, which is why we dedicate chapters 4 and 5, respectively, to them. To get
comfortable with dynamic IL generation in .NET right now, expression trees are the
best vehicle for learning the fundamentals.

 To understand expression trees, you need to understand a bit of history concern-
ing delegates in the .NET Framework and languages. Delegates were introduced in
the first version of the Framework. They were pretty slow in the early days, so a lot of
performance-conscious developers avoided using them for computationally inten-
sive work. Early delegates, as expressed in C# and Visual Basic, also had to be named
at compile time, which made them a bit awkward feeling. When the 2.0 Framework
shipped, anonymous methods were added to the C# language. Under the covers,
the runtime implementation of delegates also got a big performance boost at that
time. These were steps in the right direction. Higher-order functions could now be
declared inline without having to assign names to them. They performed well at
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runtime, too. Anonymous methods made the C# delegate syntax much more coher-
ent, but the language still lacked the overall expressive power of truly functional
programming languages.

In 2006, Microsoft added expression trees to the Base Class Library (BCL) and lambda
expression support to the C# and Visual Basic languages. These features were added
to support LINQ. With LINQ, the .NET languages could seriously compete with more
functional languages for constructing what are known as list comprehensions. That term
goes way back into computer science history. For now, the best way to think about list
comprehension is that it enables lists of objects to be created from other lists. That
sounds as absurdly simple as it is. When you think about it, doesn’t most of our work

From C++ function pointers to .NET expression trees
The C++ language uses so-called function pointers to pass functions around as
parameters to other functions. Using this technique, a function caller can provide a
variety of implementations at runtime, passing the one that best suits the current
needs of the application. Does that sound familiar? Indeed, these so-called higher-
order functions in C++ enable a rudimentary kind of application composition that can
be used for metaprogramming.

The problem with this approach is that the compiler can’t check that the parameters
or the return type of the referenced functions correctly match the expectations of the
caller. The .NET Framework 1.0 introduced delegates to deal with this problem. Del-
egates can be passed around like function references, but they fully enforce the call
contract in a type-safe way. Through several revisions of the .NET Framework, the dele-
gate concept has greatly evolved. Today we have .NET expression trees, which mas-
terfully blend the concepts of higher-order functions with code as data and a runtime
compiler into a rich instrument for everyday metaprogramming.

What makes a programming language functional?
According to computer scientist Dr. John Hughes, in his research paper “Why Func-
tional Programming Matters,” programming languages can be considered functional
if they have first-class support for both higher-order functions and lazy evaluation.
Higher-order functions are those that accept other functions as parameters or return
new functions to their callers. The C# language has had that capability since the
beginning, courtesy of delegates in the Common Language Runtime (CLR). Lazy eval-
uation means waiting until a calculation is needed to perform it. The .NET class library
includes the Lazy<T> type for deferring execution, but it’s not a language construct.
The C# and Visual Basic languages both support the yield return syntax in their
iterator blocks which, when chained together as the LINQ standard query operators
do, exhibits a useful kind of lazy evaluation for list comprehension. But this isn’t the
language-supported kind of lazy evaluation that Dr. Hughes was talking about. If you
want true lazy evaluation capability in a .NET language today, you should take a look
at F#, which is the only .NET language from Microsoft that supports it.
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in software development involve list creation and manipulation? Indeed, list handling
is one of those core concepts that can make or break a programming language.

 With the new LINQ-oriented features added to C#, a function that generically
accepts two parameters and returns a result could be expressed as follows:

public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);

Functions that compare one integer to another and return a Boolean result would
certainly fit this pattern. An instance of a function that tests whether a Left parameter
is greater than a Right parameter might be expressed this way:

public bool GreaterThan(int Left, int Right)
{
  return Left > Right;
}

It may seem odd to think about “instances of functions,” but that metaprogramming
concept will become clearer in the next few minutes. The GreaterThan function as it’s
defined above is okay, but using it as a predicate for filtering query results, for exam-
ple, is a bit cumbersome. The fact that it’s an independently defined and named func-
tion is part of the problem. To use it, you’d have to wrap it in a specific delegate type
or the closed generic type Func<int,int,bool>. C# now offers a much more succinct
way to do this using a lambda expression:

(Left, Right) => Left > Right

The => operator is read as “goes to,” so for this expression in English, you might read
it as “Left and Right parameters go to the result of testing if Left is greater than
Right.” Notice first of all that as a pure expression, there’s no requirement that the
Left and Right parameters be of any specific types. You could be comparing floating
point numbers, integers, strings—who knows? But for compilers like C#, which isn’t as
good at doing deep type inference as F# is, you need to get more specific, like this:

Func<int, int, bool> GreaterThan = (Left, Right) => Left > Right;

Now the Left and Right parameters are both known by the compiler to be inte-
ger types.

 We added the name GreaterThan back to the definition to show how this newfan-
gled functional delegate described as a lambda expression links back to the old-
fashioned function by the same name shown earlier. On the inside, both functions are
identical. You could invoke either of them with code like this:

int Left = 7;
int Right = 11;
System.Console.WriteLine("{0} > {1} = {2}",
  Left, Right, GreaterThan(Left, Right));

This would print to the console 7>11=False as you’d expect. Being able to define
functional delegates using lambda expressions sure makes the code more succinct.
The compiler support for lambda expressions is nice, but using lambda expressions in
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this way isn’t how they add real value. Using them inline in LINQ expressions is more
typical. Figure 1.6 shows LINQPad being used again. This time, we’re performing a
cross-join in LINQ to multiply one range of numbers against another. The Dump()
function is a LINQPad feature that makes it easy to dump the results of an expression.
If you were running the example code in a console application, you’d need to write
out the results with custom code.

 With two ranges of 10 values each, the result contains 100 items as shown in LINQ-
Pad’s Results tab. Forty-five of those 100 results are redundant because the cross-joined
ranges overlap and multiplication is commutative. You can eliminate the duplicates by
comparing the row and column values in a predicate, by adding a filter like this:

qry.Where(a => a.Row >= a.Column).Dump();

Notice how the lambda expression passed to the Where() standard query operator
looks a lot like the GreaterThan Func<int,int,bool> shown earlier. The difference is
that rather than taking two parameters, the two compared values are accessed from
properties of a single parameter. By using that expression in the Where() standard
query operator, the results are filtered by it. We call this type of filtering function
a predicate.

 You could read the predicate expression a=>a.Row>=a.Column in English as
“Return true for items where the Row number is greater than or equal to the Column
number.” If you’re unaccustomed to LINQ, the way this expression is used in context
may be a bit confusing. What’s the a parameter? Where did it come from? What type is
it? One of the clues can be found in the Results tab in LINQPad. Notice in figure 1.6
that the result of the Dump() is of type IEnumerable<>. The query must produce a list

Figure 1.6 Cross-joining two ranges in LINQ
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of something. Still, you don’t know what type those items in the list have because the
selectnew{…} syntax was used to produce an anonymous type which has no name
from the programmer’s perspective. You can tell from the output that each unnamed
thing has a Row property, a Column property, and a Product property. Behind the
scenes, the items in the list do have a named type, but you wouldn’t want to read it.
For anonymous types, the compiler generates a long, strange-looking name that only
has value internally. If LINQPad were to show you the name in the Results, it would
only get in the way.

 Now that you understand that the query produces a list of anonymously typed
objects, the parameter named a in the lambda expression might make a bit more
sense. In this case, the name a was chosen because each of the objects passed to
the function will be one of those anonymous types. You could have used any name
for the parameter. But when lambda functions are embedded like this, we often
use parameter names that are a bit more compact. This increases comprehension
because the use of the function is so close to its definition, long descriptive names
aren’t often needed. When functions are declared the old-fashioned way, totally
separated from their points of use, more descriptive parameter names tend to
increase comprehension.

 In figure 1.7, reading the numbers from top to bottom and left to right, you can
visualize what the improved results of the filtered query look like.

 The 45 duplicate values in the cross-join operation that would have appeared on
the bottom and left sides have been filtered out by the predicate. Try the filtered
query in LINQPad to see that it produces the result shown in figure 1.7. Then try using
some other predicates to manipulate the results in interesting ways. After all, the best
way to learn is to play.

 Now that you understand how to filter queries using a lambda expression in LINQ,
you’re ready to understand an interesting metaprogramming connection. Asking the
C# compiler to turn the lambda expression into a function is purely a compile-time
process. It may be newfangled looking, but it’s still sort of old school, as they say. What if
you need to be able to pass in a variety of filter predicates based on the circumstances

Figure 1.7 The results of filtering a cross-join 
of two ranges with a lambda predicate
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at the moment? Moreover, what if some of those filtering algorithms can’t be known at
compile time? Or perhaps they come from a remote process that can create new filters
on the fly, sending them across the wire to your application to compile and use.
Metaprogramming to the rescue!

 Moving from the idea of concrete, compile-time functions to a more generic
abstraction of those functions is fairly straightforward in .NET, thanks to so-called
expression trees and the latest compilers from Microsoft. You’ve already seen how the
C# compiler can turn a lambda expression into a real function that you can call like
any other. Internally, compilers operate by parsing the text of source code into
abstract syntax trees (AST). These trees follow certain basic rules for expressing code
as data. When lambda expressions are compiled, for example, they fit into the result-
ing AST as any other .NET constructs would.

What if you could preserve the AST created by the compiler so that it could be modi-
fied at runtime to suit your needs? If that were possible, all sorts of interesting things
would be possible. Unfortunately, as of this writing the parser and AST generator for
C# is still exposed in such a way that the average developer can’t use it to implement
the dynamic execution scenarios just described. But the aptly named expression trees
in the .NET Framework are an interesting step in that direction.

 Expression trees were introduced into .NET 3.0 to support LINQ. Then they got
great enhancements to support the Dynamic Language Runtime (DLR) in version 4.0
of the Framework. In addition to the expression tree enhancements in version 4.0, the

The importance of playfulness
For adults, some types of play are pure distraction. Blasting away at aliens in a first-
person shooting game for hours at a time can certainly wash away the worries of the
day, but it probably doesn’t help to establish and refine the prototypes that your mind
needs to absorb new ideas. Playfulness can be useful as a learning tool. Small children
lack analytical skills, so they use play to build experience and knowledge about how the
world works. As you get older, your play becomes more and more structured until even-
tually you may even forget how to do it. Throughout this book, we encourage you to be
playful with the topics we’re teaching you. When we show you one way to do something,
try a few variations to cement what you’ve learned deep into your mind.

What happened to Compiler-as-a-Service?
At the Microsoft Professional Developer Conference in 2008, Anders Hejlsberg hinted
at things to come in future versions of the C# programming language. One of them
was called Compiler-as-a-Service. The basic idea was to expose some of the C# com-
piler’s black box functionality for developers outside of Microsoft to use. Microsoft
has since dropped that name, but the ideas behind what was known as Compiler-as-
a-Service are alive and well. Jump ahead to chapter 10 to find out more right away.
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.NET compilers got the ability to parse C# and Visual Basic code directly into expres-
sions. Think back to the GreaterThan() function defined as a lambda expression ear-
lier. Remember the Func<int,int,bool> that created a real, callable function at
compile time? Now evaluate the following line of code and look for the differences:

Expression<Func<int, int, bool>> GreaterThanExpr =
  (Left, Right) => Left > Right;

Syntactically, the GreaterThan Func<> has been enclosed in an Expression<> type and
renamed to GreaterThanExpr. The new name will make it clearly different in the dis-
cussion that follows. But the lambda expression looks exactly the same. What’s the
effect of the change? First, if you try to compile an invocation of this new Greater-
ThanExpr expression, it will fail:

bool result = GreaterThanExpr(7, 11); // won’t compile!

The GreaterThanExpr expression can’t be invoked directly as the GreaterThan func-
tion could. That’s because after compilation, GreaterThanExpr is data, not code.
Rather than compiling the lambda expression into an immediately runnable func-
tion, the C# compiler built an Expression object instead. To invoke the expression,
you need to take one more step at runtime to convert this bit of data into a run-
nable function.

Func<int, int, bool> GreaterThan =
  GreaterThanExpr.Compile();

bool result = GreaterThan(7, 11); // compiles!

The Expression class exposes a Compile() method that can be called to emit run-
nable code. This dynamically generated function is identical to the one produced by
both the old-fashioned, separately defined method named GreaterThan and the pre-
compiled Func<> delegate by the same name. Calling a method to compile expres-
sions at runtime may feel a bit odd at first. But once you experience the power of
dynamically assembled expressions, you’ll begin to feel right at home.

As you’ve seen in the previous example, the C# compiler can build an Expression for
you at compile time. That’s certainly convenient, but you can also assemble lambda

How LINQ uses Expressions
LINQ queries benefit directly from the way that Expressions can be compiled. But the
various LINQ providers don’t typically call the Compile() method as shown here. Each
provider has its own method for converting expression trees into code. When a predicate
like a => a.Row > a.Count is compiled, it might produce IL that can be invoked in a
.NET application. But the same expression could be used to produce a WHERE clause
in a SQL statement or an XPath query or an OData $filter expression. In LINQ, expression
trees act as a sort of neutral form for conveying the intent of code. The LINQ providers
interpret that intent at runtime to turn it into something that can be executed.
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expressions by hand which may be useful in some applications. The code in the fol-
lowing listing shows how to construct and compile an Expression class programmati-
cally that implements the GreaterThan function seen previously.

using System;
using System.Linq.Expressions;

class ManuallyAssembledLambda
{
  static Func<int, int, bool> CompileLambda()
  {
    ParameterExpression Left =
      Expression.Parameter(typeof(int), "Left");
    ParameterExpression Right =
      Expression.Parameter(typeof(int), "Right");

    Expression<Func<int, int, bool>> GreaterThanExpr =
      Expression.Lambda<Func<int, int, bool>>
      (
        Expression.GreaterThan(Left, Right),
        Left, Right
      );

    return GreaterThanExpr.Compile();
  }

  static void Main()
  {
    int L = 7, R = 11;
    Console.WriteLine("{0} > {1} is {2}", L, R,
      CompileLambda()(L, R));
  }
}

The CompileLambda() method starts by creating two ParameterExpression objects:
one for an integer named Left, and another for an integer named Right. Then the
static Lambda<TDelegate> method in the Expression class is used to generate a
strongly typed Expression for the delegate type you need. The TDelegate for the
lambda expression is of type Func<int,int,bool> because you want the resulting
expression to take two integer parameters and return a Boolean value based on the
comparison of them. Notice that the root of the lambda expression is obtained from the
GreaterThanproperty on the Expression class. The returned value is an Expression
subclass known as a BinaryExpression, meaning it takes two parameters. The
Expression type serves as a factory class for many Expression-derived types and other
helper members. Here are a few of the other Expression subtypes you’re likely to use
when building expression trees programmatically:

■ BinaryExpression—Add, Multiply, Modulo, GreaterThan, LessThan, and so on
■ BlockExpression—Acts as a container for a sequence of other Expressions
■ ConditionalExpression—IfThen, IfThenElse, and so on

Listing 1.8 Assembling a lambda Expression manually
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■ GotoExpression—For branching and returning to LabelExpressions
■ IndexExpression—For array and property access
■ MethodCallExpression—For invoking methods
■ NewExpression—For calling constructors
■ SwitchExpression—For testing object equivalence against a set of values
■ TryExpression—For implementing exception handling
■ UnaryExpression—Convert, Not, Negate, Increment, Decrement, and so on

The list goes on and on. In fact, there are more than 500 methods and properties
returning dozens of expression types in that class. They cover about any coding con-
struct you can imagine (and probably many more that you can’t). Complex expres-
sion trees can be constructed entirely from Expression–derived objects instantiated
directly from static properties and methods in this base class.

 To round out this introductory section on the topic, let’s look at one more interest-
ing example. The manually assembled lambda expression shown earlier is nice, but it
only provides predicates for integers. Moreover, it emits code only for greater-than
operations. The following listing shows a more dynamic version of that code that can
be used for any data type and a variety of ordering comparisons.

using System;
using System.Linq.Expressions;

class DynamicPredicate
{
  public static Expression<Func<T, T, bool>>
    Generate<T>(string op)
  {
    ParameterExpression x =
      Expression.Parameter(typeof(T), "x");
    ParameterExpression y =
      Expression.Parameter(typeof(T), "y");
    return Expression.Lambda<Func<T, T, bool>>
      (
        (op.Equals(">")) ? Expression.GreaterThan(x, y) :
          (op.Equals("<")) ? Expression.LessThan(x, y) :
          (op.Equals(">=")) ? Expression.GreaterThanOrEqual(x, y) :
          (op.Equals("<=")) ? Expression.LessThanOrEqual(x, y) :
          (op.Equals("!=")) ? Expression.NotEqual(x, y) :
          Expression.Equal(x, y),
        x, y
      );
  }
}

A generic function has been built to generate a type-safe expression based on the
compared type and a comparison operation using a type parameter and a standard
string parameter, respectively. The generator function is aptly named Generate. In the

Listing 1.9  A DynamicPredicate class using expression trees
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following listing, notice how predicates for different data types can now be defined
and compiled dynamically.

static void Main()
{
  string op = ">=";
  var integerPredicate =
    DynamicPredicate.Generate<int>(op).Compile();
  var floatPredicate =
    DynamicPredicate.Generate<float>(op).Compile();

  int iA = 12, iB = 4;
  Console.WriteLine("{0} {1} {2} : {3}", iA, op, iB,
      integerPredicate(iA, iB));

  float fA = 867.0f, fB = 867.0f;
  Console.WriteLine("{0} {1} {2} : {3}", fA, op, fB,
      floatPredicate(fA, fB));

  Console.WriteLine("{0} {1} {2} : {3}", fA, ">", fB,
      DynamicPredicate.Generate<float>(">").Compile()(fA, fB));
}

The first predicate generated in this example uses
the greater-than-or-equal-to operator on integer
types. The next one is for the same operator com-
paring floating-point types. The predicates are
then used to perform simple comparisons. In the
last statement, a dynamic predicate is built for
the greater-than operator on floating-point types,
which is used to compare the same floating-point
values from the last invocation. Figure 1.8 shows
the result of running the code.

 We’ve only scratched the surface of what expression trees can do in .NET. The
power of LINQ and the DLR wouldn’t be possible without them. For example, LINQ’s
IQueryable interface can be used to consume dynamically assembled expressions, giv-
ing you a truly elegant way to make the search and query interfaces in your applica-
tions simple to extend over time. For that example and more, turn to chapter 6. In the
meantime, let’s take a look at one more way to do metaprogramming in .NET:
dynamic typing.

1.2.4 Metaprogramming via dynamic objects

Statically typed languages rule the roost, as they say, in the .NET world. Even though
Microsoft’s IronPython implementation of the venerable Python programming lan-
guage is impressive both in terms of performance and compatibility, programmers accus-
tomed to working on the Microsoft stack don’t seem to be as attracted to it as some of us
had hoped. It’s not just that old habits die hard. New skills are quite difficult to form, in

Listing 1.10 Invoking the DynamicPredicate

Figure 1.8 Exercising the 
DynamicPredicate class
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particular when one believes that the tools they use are excellent for problem-solving.
Asking C++ and Visual Basic 6 developers to upgrade their skills to learn C# and Visual
Basic .NET was difficult enough. Asking those developers to invest time and energy to
learn Python and Ruby has proven to be tougher still.

 Dynamic languages like JavaScript, Python, and Ruby have a lot to offer. The lan-
guages themselves are all wonderfully expressive. Well-developed platforms and librar-
ies like jQuery, Django, and Rails make it easy to get going. After working with these
languages for a while, one discovers what seems to be endless depth in the included
libraries. Almost anything you could ever want for building rich applications has been
created and captured in the standard libraries. Pythonistas say about their language
that it comes batteries included.

 Alas, dynamic languages may never be as popular on the .NET Framework as our
trustworthy, statically typed companions of old. But that doesn’t mean that the
dynamic programming language developers should have all the fun.

A C# DYNAMIC TYPING BACKGROUNDER

On Jan. 25, 2008, Charlie Calvert of Microsoft Corporation posted a blog article titled
“Future Focus I: Dynamic Lookup.” In that post, he wrote, “The next version of Visual
Studio will provide a common infrastructure that will enable all .NET languages,
including C#, to optionally resolve names in a program at runtime instead of compile
time. We call this technology dynamic lookup.”

 True to his word, version 4.0 of the C# programming language included great sup-
port for creating and handling dynamically typed objects. Charlie went on in the post
to list the key scenarios for using this new capability. Years later, his list is still compel-
ling. The list includes:

■ Office automation and COM interop
■ Consuming types written in dynamic languages
■ Enhanced support for reflection

We look at the first two scenarios in detail in Part 3 (chapters 8-10) of this book.
Because you’ve already gotten a taste of reflection in this chapter, let’s build on that
learning by examining Charlie’s third scenario. We begin by taking a quick tour of so-
called duck typing. This odd-sounding term traces its origins to James Whitcomb Riley,
a 19th century poet: “When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.” The current phrase, specific to ensur-
ing type-appropriateness in programming languages, is only a couple of decades old.

 With respect to computer programming, you might translate Riley’s “walk like a
duck…” line into “If an object supports the methods and properties I expect, I can
use them.”

 We use the word expect deliberately because the duck-typing concept is all about
compile-time versus runtime expectations. If you expect an object to have a method
named CompareTo in it, taking one Object parameter and returning an integer result,
do you care how it got there? The answer depends somewhat on your worldview. More



31Examples of metaprogramming
importantly, it depends on your tools. Examine the code in figure 1.9, which throws
an exception at runtime while trying to perform a simple sort.

The L in SOLID
The programming acronym SOLID packs a lot of meaning into five little letters. The L
stands for the Liskov substitution principle (LSP), which has a genuinely formidable
sounding ring to it. Although it may sound a bit unnerving, the LSP isn’t all that chal-
lenging to understand. It means that subtypes behave like the types from which
they’re derived. Inherent in the LSP is that the compiler gives the programmer support
for enforcing type correctness at compile time.

Why is this significant to understand in a discussion about duck typing? Well, in stati-
cally typed languages like C#, classes behave like contracts. They make promises
about their members, the count, order, and type of parameters that must be pro-
vided, and the return types. Truly dynamic languages don’t enforce contracts this
way, which makes them feel different to the programmer who’s accustomed to get-
ting LSP support from the compiler. This will be important to keep in mind as you
learn about C#’s dynamic typing capabilities.

Figure 1.9 Simple sorting that throws an exception
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The code looks okay, and indeed, it compiles perfectly. But an ArgumentException is
thrown at runtime from the Sort function, indicating that “At least one object (in
the comparison) must implement IComparable.” If you were new to C#, having
come from the Python or Ruby worlds, this error might cause real confusion. Having
looked to other C# programs as examples, a dynamic-language programmer might
have concluded that implementing a CompareTo function in a class with the
expected method signature was all that’s required to do sorting of arrays containing
that type. The Sort function implementation is a bit more demanding than that,
however. Not only must you include a CompareTo method in your class, it must specif-
ically be of the type IComparable.CompareTo. Adding that one simple declaration to
the Thing class solves the problem:

public class Thing : IComparable
{
  public string Name { get; set; }
  public int CompareTo(object other)
  {
    return Name.CompareTo(((Thing)other).Name);
  }
}

This kind of demand is foreign to programmers accustomed to working in dynamic
languages because it doesn’t seem substantive to them. In fact, to a dynamic-language
programmer, this sort of demand feels downright offensive. Why should the Array.Sort
function care how the CompareTo method got into the Thing class? To them, the exis-
tence of the function at runtime should be enough.

The question that Charlie Calvert and the C# compiler team posed in 2008 is: “Can
one modern programming language support both the static and dynamic typing mod-
els well?” With all due respect, the answer to that question is resoundingly no. C# is
still a statically typed language. The dynamic capability in version 4.0 has been bolted
on to the side of the language, as you’ll discover in a moment. Declaring and using a
dynamic object in C# could hardly be easier:

dynamic name = "Kevin";
System.Console.WriteLine("{0} ({1})",
  name, name.Length);

No value in religious debate
This is the point in the discussion where we could spiral downward into a somewhat
religious argument about the worth of various programming models, but we’re going
to resist the urge. The dynamic way of programming is no better or worse than the
static way. It’s different. Some problems are well-suited to one type of solution or
another. The fact of the matter is that software developers get great work done in
statically typed environments and dynamically typed ones, too. That makes both
approaches worthy of study and respect.
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Run that code in LINQPad after selecting C# Statements from the Language drop-
down list to see that it dutifully formats and prints the name and the length of the
string as 'Kevin(5)' to the Results tab. Now change the declared type for the name
variable to a string and run it again. You’ll notice that the output in the Results tab is
identical. What’s the difference? While you have the name variable defined as a
string, switch to LINQPad’s IL tab. This will show you the compiled IL for the code,
which will look something like figure 1.10.

 Your introduction to IL is coming in chapter 2, but this code is so simple, you
should be able to make out what’s going on. The two literal strings you see in the C#
code are pushed onto the stack before the get_Length method is called on the System
.String class using the callvirt opcode. If you’ve never looked at IL, you may be sur-
prised to find that the Length property accessor for a string is implemented with the
name get_Length. The result of calling get_Length is of type System.Int32, but
the Console.WriteLine method expects parameters of type of System.Object. The
box opcode is used to box that integer value type as an object before calling System
.WriteLine. All this was done with eight IL opcodes.

 Now change the type of the name variable back to dynamic, rerun the code,
and observe the IL it produces. We won’t show that IL listing here because it
would take up a couple of pages and require several more pages to fully describe.
In chapter 8, we do a deeper investigation of the CallSite class and other
metaprogramming-relevant classes from the System.Runtime.CompilerServices
and Microsoft.CSharp namespaces. As you scroll through the IL on your own,
take time to notice two literal strings that are pushed on the stack that weren’t
pushed in the previous example:

Figure 1.10 The IL from writing a string to the console
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IL_0012:  ldstr       "WriteLine"
//... some code omitted ...
IL_0089:  ldstr       "Length"

You may also notice that the reference to the get_Length method is also missing from
the IL. How could the get_Length method be invoked if it’s not in the IL? The fact
that it’s missing is an interesting clue, as it turns out. Also, do you see literal strings for
"WriteLine" and "Length" in the original C# code? No, so why do these literal strings
appear in the IL now? When the type of the name variable was changed from string to
dynamic, many changes happened under the covers, as you can see.

 The outermost change involves the emission by the C# compiler of CallSite
objects into the IL. A CallSite is literally the site in the code where something
dynamic happens. It may surprise you that in this code, there are two CallSite
objects. One is used to invoke the Length property accessor on the name, which hap-
pens through a call to the runtime binder’s GetMember method:

IL_0089:  ldstr       "Length"
//... some code omitted ...
IL_00AA:  call        Microsoft.CSharp.RuntimeBinder.Binder.GetMember

That makes sense given that the name variable was marked as dynamic. Using the dot
operator after the name variable to invoke the Length property ends up passing the lit-
eral string "Length" to the C# runtime binder to reflect against the object to get the
value. Do you remember that Charlie said in his blog post how dynamic lookup would
simplify reflection? The reflection that the C# runtime binder is doing for you also
explains why the call to the get_Length function is conspicuously absent in this ver-
sion of the code. There’s no need to bind up a call to get_Length at compile time
because the invocation is going to happen at the CallSite at runtime via reflection.

 The remaining mysteries at this point are (a) that literal string "WriteLine" that
you found in the IL, and (b) that second CallSite that was emitted into the site con-
tainer. Could they be related? Indeed, they are related. The second CallSite is used
to call InvokeMember on the C# runtime binder to dispatch a dynamic call to the static
"WriteLine" method on the System.Console class. The question that might pop into
your mind is: “Why on Earth is the WriteLine method being called dynamically?”
After all, nothing about System.Console was declared to be dynamic.

 This code highlights one of the biggest concerns that many developers have about
dynamic typing in C#. When you pass a type declared as dynamic to a method, or if that
method returns such a type, that method call will also be implemented dynamically
through a CallSite that’s emitted by the compiler. Most developers expect to pay a price
for using the dynamic keyword in C#, but they don’t expect that it will have a ripple effect,
causing other nearby function calls and member accesses to become dynamically invoked
as well. The best advice we can give is to be careful when using C#’s dynamic keyword.

 Now that you have an appreciation for what’s happening behind the scenes with
dynamic typing in C#, let’s turn our attention to a simple but useful class that can be
used to implement dynamic property bags.



35Examples of metaprogramming
IMPLEMENTING METAOBJECTS IN C#
Many dynamic languages allow any object to be treated like a property bag. Members
can be added to or removed from the bag at will. Some dynamic languages even let
you modify the class definitions on the fly so that newly instantiated objects of those
types will get the updated definition. Using Python, for example, it’s simple to add
properties to an instance on the fly using code like this:

>>> class PyExpandoObject():
...     pass
...
>>> container = PyExpandoObject()
>>> container.Name = 'Jenny'
>>> container.PhoneNumber = 8675309
>>> print container.Name, '-', container.PhoneNumber
Jenny - 8675309

In this code, The PyExpandoObject class is defined as an empty class using the pass
keyword. Then an instance of the PyExpandoObject named container is allocated.
What happens next may seem odd to a developer using statically typed languages, but
it’s common in many metaprogramming environments. Two new members called
Name and PhoneNumber are added by assigning values to their names. A print state-
ment is used to report the values of the new members back to the console. Python
infers the types of the new members correctly, which you can test by using Python’s
type() function.

>>> type(container.Name)
<type 'str'>
>>> type(container.PhoneNumber)
<type 'int'>

Internally, Python manages a dictionary of its members, which it can modify on the fly,
adding new members or redefining them as necessary. Python even allows the pro-
grammer to delete members programmatically. Adding new members to a class
instance in C# 4.0 is similarly simple when using the ExpandoObject class:

dynamic container = new System.Dynamic.ExpandoObject();
container.Name = "Jenny";
container.PhoneNumber = 8675309;

No dynamic type in C#
You may be surprised to find that there’s no backing type for the dynamic keyword
in C#. The functionality enabled by the dynamic keyword is a clever set of compiler
actions that emit and use CallSite objects in the site container of the local execu-
tion scope. The compiler manages what programmers perceive as dynamic object ref-
erences through those CallSite instances. The parameters, return types, fields,
and properties that get dynamic treatment at compile time may be marked with some
metadata to indicate that they were generated for dynamic use, but the underlying
data type for them will always be System.Object.
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Console.WriteLine("{0} - {1}",
  container.Name, container.PhoneNumber);

This C# code will write the same string to the console that the preceding Python code
did. In Python, any object can act as a dynamic property bag. In C#, though, you must
use an ExpandoObject or build that functionality into one of your own classes. Not
surprisingly, the ExpandoObject uses a dictionary object internally to mimic the func-
tionality that Python offers. What’s unclear, however, is how the C# compiler under-
stands how to interact with the ExpandoObject class to enable new name value pairs to
get into the internally managed dictionary.

 In the example shown earlier involving a dynamic string, the GetMember function
from the C# runtime binder was invoked to reflect on the string to obtain the value of
its Length property. The GetMember function was called because you were trying to get
the value of the Length property to display on the console. In the previous C# code
using ExpandoObject, the assignment to container.Name and container.Phone-
Number are clearly not going to invoke GetMember in the binder, because you’re
attempting to mutate the values, not fetch them. As you can imagine, the DLR also
includes a SetMember function in the C# runtime binder for this purpose. The IL that
sets the value "Jenny" to the Name property follows this abbreviated flow:

IL_000E:  ldstr       "Name"
//... some code omitted ...
IL_0039:  call        Microsoft.CSharp.RuntimeBinder.Binder.SetMember
//... some code omitted ...
IL_0058:  ldstr       "Jenny"

The C# compiler emits a call to SetMember for the "Name" property to set the value
"Jenny." The C# compiler seems to have done its part well, but you still don’t know
how the name value pair "Name", "Jenny") is going to get into the ExpandoObject’s
internal dictionary. The answer to that comes by looking at the implementation of
ExpandoObject, which implements six interfaces:

IDynamicMetaObjectProvider
IDictionary<string,object>
ICollection<KeyValuePair<string,object>>
IEnumerable<KeyValuePair<string,object>>
IEnumerable
INotifyPropertyChanged

The first interface in the list is the one that enables the standard C# runtime binder’s
SetMember function to call custom code to manage ExpandoObject’s internal dictionary
object. The definition of IDynamicMetaObjectProvider is deceptively simple looking:

public interface IDynamicMetaObjectProvider
{
  DynamicMetaObject GetMetaObject(Expression parameter);
}

In this interface, you’re beginning to see common metaprogramming terms that you
can recognize from examples in this chapter. You know what dynamic means. You
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know what Expressions are. Metaobjects aren’t yet well-defined, but they’re almost
certainly some kind of type used in metaprogramming.

By implementing this interface, the ExpandoObject can interact with the C# runtime
binder by providing handlers for specific events that occur in the lifecycle of those
types. The DynamicMetaObject returned by the GetMetaObject function in the inter-
face has many virtual methods that can be overridden to provide specific types of run-
time binding functionality. We cover all of these methods in detail in chapter 8. For
now, the two methods required to understand the interface between C#’s runtime
binder and ExpandoObject’s internal dictionary are

BindGetMember
BindSetMember

When the runtime binder observes that the dynamic object it’s operating on implements
the IDynamicMetaObjectProvider interface, it defers the binding calls to the methods in
the DynamicMetaObject that’s provided through that interface rather than trying to
resolve them with reflection. This multistep process is admittedly arcane sounding, but
once you get the hang of using it, you’ll understand that it’s as simple as it needs to be
and flexible enough to handle nearly any metaprogramming scenario.

 To remove any remaining mystery, let’s implement an expandable property bag
called MyExpandoObject, providing custom implementations for GetMember and
SetMember at runtime. Rather than implementing the entire IDynamicMetaObject-
Provider contract, let’s take a shortcut. A helper class has been included in the
.NET Framework called DynamicObject that implements IDynamicMetaObject-

Provider for you, hiding the somewhat complex Bind* methods and exposing a set
of similarly named but simpler Try* methods instead. To implement the dynamic
property bag, you’ll need to derive your class from DynamicObject and override the
TryGetMember and TrySetMember functions to provide your custom binding code.
The following listing shows the definition of the MyExpandoObject type.

 
 

Meta madness!
The appearance of the prefix meta over and over again in metaprogramming jargon
can be a bit overwhelming. It’s not a prefix that we encounter on English words all
that often, so it can be a bit confusing. Remember that in Greek, meta means after
or beside. You might read the DLR term metaobject to mean after-object or beside-
object. The way the DLR uses metaobjects in conjunction with the runtime binders,
they fit the beside-object definition better. Metaobjects run alongside other types
like the ExpandoObject to help the runtime binder in binding up specific methods
like SetMember and GetMember when the code demands to set or get named val-
ues, respectively.
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using System;
using System.Collections.Generic;
using System.Dynamic;

public class MyExpandoObject : DynamicObject
{
  private Dictionary<string, object> _dict =
    new Dictionary<string, object>();

  public override bool TryGetMember(
    GetMemberBinder binder, out object result)
  {
    result = null;
    if (_dict.ContainsKey(binder.Name.ToUpper()))
    {
      result = _dict[binder.Name.ToUpper()];
      return true;
    }
    return false;
  }

  public override bool TrySetMember(
    SetMemberBinder binder, object value)
  {
    if (_dict.ContainsKey(binder.Name.ToUpper()))
      _dict[binder.Name.ToUpper()] = value;
    else
      _dict.Add(binder.Name.ToUpper(), value);
    return true;
  }
}

For this implementation, we’ve decided that the properties inserted into the bag
shouldn’t have case-sensitive names. Programmers should be able to save a value into the
property bag named JABBERWOCKY and retrieve it later with the name jAbBeRwOcKy, for
example. The ToUpper function on the string class is used whenever properties are set
and fetched from an internally managed dictionary containing the name value pairs.
The code in the following listing shows how the MyExpandoObject might be used.

class TestMyExpandoObject
{
  static void Main()
  {
    dynamic vessel = new MyExpandoObject();
    vessel.Name = "Little Miss Understood";
    vessel.Age = 12;
    vessel.KeelLengthInFeet = 32;
    vessel.Longitude = 37.55f;
    vessel.Latitude = -76.34f;
    Console.WriteLine("The {0} year old vessel " +

Listing 1.11 MyExpandoObject: a DLR-based dynamic property bag

Listing 1.12 Exercising MyExpandoObject
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      "named {1} has a keel length of {2} feet " +
      "and is currently located at {3} / {4}.",
      vessel.AGE, vessel.name,
      vessel.keelLengthINfeet,
      vessel.Longitude, vessel.Latitude);
  }
}

After instantiating a MyExpandoObject and assigning the reference to a dynamic vari-
able named vessel, properties of different types are placed into the property bag.
Each assignment will invoke the overridden TrySetMember implementation, which
will place them into the internal dictionary object. At the end, the properties are
fetched from the property bag by name. To exercise the case-insensitive handling of
property names, they’ve been deliberately cased differently than they were in assign-
ments beforehand. Figure 1.11 shows the result of running the code in listing 1.10
and listing 1.11 in LINQPad.

 This little metaprogramming-enabled class does a great job of raising the abstrac-
tion level for managing name value pairs, making the code highly reusable. It also
increases comprehension by providing a natural interface while reducing the per-
ceived complexity.

1.3 Summary
In this chapter, we spent time trying to convey that metaprogramming might some-
times be a bit complex on the inside, but it can greatly reduce the perceived complex-
ity on the outside of the classes that you provide to your team. You also learned how
cohesion and abstraction relate to complexity and how metaprogramming can help to

Figure 1.11 The metaprogramming class called MyExpandoObject in action
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put them in balance. You discovered that you could use the synonyms after-programming
and beside-programming to put the two basic ways in which metaprogramming is often
implemented into contrast to enable future learning. Then you dove into common
examples of metaprogramming that you may encounter working in and around the
.NET Framework.

 That’s certainly a lot of material, but, to be honest, we’ve only been able to scratch
the surface of the kinds of metaprogramming that can be done using the Microsoft
.NET Framework. We made the examples in this chapter deliberately simple to get you
started on the journey. We hope that these prototypes will serve you well as you con-
tinue your voyage through the remainder of the book.



Exploring code and
metadata with reflection
Metaprogramming in .NET can incorporate many different concepts and tech-
niques. Some areas are fairly easy to grasp, others can be quite difficult. The best
way to begin is to visit the Reflection API, which has been in .NET since version 1. It
provides a fairly simplistic introduction to core concepts of metaprogramming
(such as introspection) and it gives you a glimpse into the structure of .NET code. 

 To start the journey down the .NET metaprogramming road, you’ll go through a
couple of problems where reflection helps solve the issue. You’ll walk through exam-
ples that demonstrate reading the contents of an assembly and running its code.
Finally, you’ll dissect real-world examples that we’ve used on projects in the past
which illustrate how useful reflection can be in creating generalized, compact solu-
tions. Let’s start by looking at a couple metaprogramming-related issues you can
solve with the power of the Reflection API.

This chapter covers
■ The need for reflection
■ Reading metadata and executing code
■ Practical uses of reflection
41
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2.1 The need for reflection
Reflection is a concept that has been around a long time in many programming lan-
guages, before .NET existed. Reflection is all about giving a developer the ability to read
the contents of a program and execute its code. The depth of reflection that lan-
guages and platforms offer varies, but generally any system that allows you to inspect
and invoke code at runtime uses some form of reflection.

 Let’s cover two scenarios that a .NET developer may run into where reflection can
provide real value.

2.1.1 Creating extensible applications

It’s not easy to write code that works well. Good developers review their designs with
team members, write unit tests, use analyzers to review their work, and so on. And
determining all the features that an application should have isn’t the easiest endeavor.
Users are always asking for new features, and understandably so. Markets and business
vertical dynamics can (and do) change rapidly, so they want their applications to be
flexible as well. If a developer creates tightly coupled applications, adding new fea-
tures as time marches on can be difficult. But with a little bit of design and insight,
your applications will be easier to extend.

 Let’s say you have an application that needs to display different reports based on a
specific set of data. If you wrote the application such that it had explicit knowledge of
all the reports it needs to show for version 1, adding new reports could require a com-
plete redeployment of the application. Without reflection, your design is static and
inflexible. But let’s say you took this approach:

■ You create an interface called IReport that developers can implement to create
their own reports based on a common interface.

■ You add code that looks at a specific directory for assemblies, loads them into
memory, and looks for all the types that implement that interface.

■ You create instances of those types and invoke members on those types as an
IReport variable reference.

Now your application is extensible. You have a common way for other developers to
add, or plug in, new reports to your application without having to recompile the
entire application. All they need to do is put their custom reports in an assembly in a
well-known directory, and the application will pick them up automatically. All this can
easily be supported by the Reflection API. Figure 2.1 illustrates how this design works.
Granted, there are a lot of details you need to be aware of to make such a system resil-
ient and reliable, but the core concept is within reach via reflection.

2.1.2 Manipulating code members at runtime

If you’re a developer who’s used to working with dynamic languages, such as Ruby or
JavaScript, you’re comfortable working within a system where you can literally define
the system as it runs by adding functions to objects. To seasoned C# or VB developers,
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this isn’t a common activity; it may even seem unsafe. Why would you want to have
such dynamic programs when they live within the comfort of the compiler that
catches mistakes at compile time? In fact, only in .NET 4.0 was the dynamic type added
to C# to support this kind of programming model.

 So why would a C# or VB developer want to use dynamic language techniques?
Simple: it makes it easier to create systems based on convention. Ruby on Rails (or
RoR) is a common example cited by dynamic language aficionados as a framework
that makes it easy to build web applications in Ruby. The classes in RoR create meth-
ods that a developer would expect to use to find, edit, and save objects by looking at a
table in a database. This is an extremely simplistic view of RoR, but you get the point:
you don’t need to write all that boilerplate persistence code in RoR. The framework
wires that up for you. Although you can’t define new members with reflection, you can
invoke members with reflection by knowing the name of the member as a string. At its
core, this is what C#’s dynamic is doing for you. An open-ended system like this pro-
vides dynamic programming capabilities that can make system designs simpler.

Now that you have a basic view of what’s possible with reflection, let’s start looking at
the Reflection API and how you interact with it.

2.2 Reading metadata and executing code
This section is a whirlwind tour of System.Reflection and what’s possible within its
members. Our intent isn’t to go through every possible class and method in this
namespace, but rather to give a clear overview of the core concepts and functionality
that reflection provides.

NOTE Remember to add using System.Reflection; in any code file that
uses reflection.

Modern .NET frameworks based on dynamic programming
A number of projects have been created that make heavy use of dynamic program-
ming techniques. Clay (http://clay.codeplex.com) lets you dynamically create the
structure of an object at runtime. Massive (https://github.com/robconery/massive)
is a library that makes it extremely simple to wire types to table definitions and per-
form ad-hoc queries against databases. You owe it to yourself to investigate these
frameworks to see how they derive their power.

Figure 2.1 High-level design of an 
extensible application. New assemblies 
are copied to a directory, which the main 
application monitors for changes to load 
desirable additions.

http://clay.codeplex.com
https://github.com/robconery/massive
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2.2.1 Obtaining the starting point

Depending on what you’re looking for, there are two main entry points into the
Reflection API: assembly or type. To get a reference to a type, all you need is its name.
Here’s how you get the Random type:

var type = Type.GetType("System.Random");

All you have to do to get a Type reference is provide the full name of the type. If you
only use Random as the name, you’ll get a null reference as the return value. 

 There are six overloaded versions of GetType() … and that’s something you need to
get used to when you’re messing around with the Reflection API. Most of the Get methods
you’ll run across have a number of overloads. There’s usually more than one way to solve
a problem at hand, and seeing what overloads are available is worth the time. For exam-
ple, GetType() won’t throw an exception if it can’t find the type in either the current
assembly or any referenced assemblies, but you can change that by using an overload:

var type = Type.GetType("System.Random", true);

You can also get a type via the typeof keyword:

var type = typeof(Random);

Finally, every object has the GetType() method as it’s defined in the Object class:

var type = new Random().GetType();

The last two approaches are safer than the string-based one. With typeof, you’ll know
at compile time if your code is correct, and calling GetType() on an object guarantees
a non-null return value. Using strings provides a great deal of flexibility, but it’s easy to
make a typing mistake and not know about it until execution time. Good unit tests will
weed out these sorts of errors, but don’t fall into a false sense of security if your reflection-
based code compiles. Make sure to test it!

 Another approach is to load an assembly, then dig into its contents. The Assembly
class has a number of load methods to do this. When you load an assembly, you’re
loading its contents into the current AppDomain so it can be used by your reflection-
based code. When you reference an assembly in Visual Studio or in csc.exe, these ref-
erences are baked into the assembly and are automatically loaded by the CLR. 

Here are three examples of loading assemblies that produce the same results (with
slightly different implementation details):

Understanding AppDomains
You can think of an AppDomain as an isolated area where code executes. Most of
the time, you don’t have to deal with AppDomains because the runtime sets one up
for you when an application starts. Creating multiple AppDomains in an application is
possible, but that goes beyond the scope of what we’re interested in here.
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var assembly = Assembly.Load(new AssemblyName() 
  { Name = "mscorlib", Version = new Version(4, 0, 0, 0) });
var assembly2 = Assembly.Load("mscorlib, Version=4.0.0.0");
var assembly3 = Assembly.LoadFrom(
  @"file:///C:/Windows/Microsoft.NET/Framework/v4.0.30319/mscorlib.dll");

All the variables reference the same assembly. If the assembly is already loaded into
the current AppDomain, it’ll return the existing reference. 

NOTE Although all the Load() methods off of Assembly will get you a refer-
ence to an assembly, they do work differently under the hood.1

You can also get a reference to the assembly that’s currently executing via GetExecuting-
Assembly(), and the assembly that started everything up with an entry point method
(for example, Main()) with GetEntryAssembly()). Finally, you can get a reference to
the assembly that contains a given type with the Assembly property, and you can find a
type within an assembly with GetType():

var randomAssembly = typeof(Assembly).Assembly;
var randomType = randomAssembly.GetType("System.Random");

A nongeneric type like Random is easy to retrieve, but what about trying to find the
Lazy<T> class in mscorlib?

var lazyType = randomAssembly.GetType("System.Lazy`1");

The names of generic classes and methods use this tick format, where the number after
the tick specifies the number of generic parameters the class or method takes. You can
also retrieve a generic type using the typeof keyword like this:

var lazyType = typeof(Lazy<>);

If the type had multiple generic arguments, you’d use a series of commas to specify
the number of generic arguments. For example, the following code gets a Tuple
<T1,T2,T3>:23

var threeTupleType = typeof(Tuple<,,>);

1 MSDN library, “Best Practices for Assembly Loading,” http://mng.bz/kv4g.
2 Eric Lippert (blog), “In Foof We Trust: A Dialogue,” http://mng.bz/k0eQ.
3 Patrick Smacchia (posted by), “Elegant infoof operators in C# (read Info Of),” June 28, 2010, http://

mng.bz/YK8h.

The infoof idea
The typeof keyword is the only one of its kind in C#. There’s no methodof, fieldof,
and so on. These other mythical operators are called infoof (a combination of info and
of). There’s a good article2 that explains why they’re not in C#; another article3  dem-
onstrates how you can use Expression trees (something we cover in chapter 6) to
(almost) achieve the same effect.

http://mng.bz/kv4g
http://mng.bz/k0eQ
http://mng.bz/YK8h
http://mng.bz/YK8h
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2.2.2 Finding member information

As you saw in the last section, you can use GetType() on an Assembly object to retrieve
a specific type. This pattern (for example, using a Get method) repeats itself throughout
the Reflection API. Say you wanted to get the "Next" method off of a Random type. In that
case, you’d use GetMethod():

var randomType = new Random().GetType();
var nextMethod = randomType.GetMethod("Next");

However, methods on a class definition can be overloaded, so you’ll want to be more
specific with GetMethod() to get a particular kind of method. In fact, if you don’t sup-
ply enough criteria to GetMethod(), you’ll get an AmbiguousMatchException. This
piece of code gets the "Next" method that takes two arguments—a minimum and
maximum value (both ints):

var nextWithTwoArguments = randomType.GetMethod("Next", 
  new Type[] { typeof(int), typeof(int) });

You can also differentiate between methods by using a combination of BindingFlags:

var nextWithTwoArguments = randomType.GetMethod("Next", 
  BindingFlags.Instance | BindingFlags.Public, 
  null, new Type[] { typeof(int), typeof(int) }, null);

As you can see with BindingFlags, there’s a Public value that you can use to look only
for public members. There’s also a NonPublic value, which means that you can see
private and protected content via the Reflection API. Depending on your view, this
may seem like a severe security breach when you consider that this allows arbitrary
code to change the values of private fields in an object. But only privileged code can
use the reflection calls. If you don’t have this level of access, your use of reflection will
fail. The article “Security Considerations for Reflection” at http://mng.bz/Gwau
explains the security rules pertaining to reflection in detail.

 Once you have a method, you can get all the parameters from it via GetParameters():

var nextParameter = nextWithTwoArguments.GetParameters();

This returns an array of ParameterInfo objects that contain the name, position, and
type of parameter. 

 Similar methods exist for properties (GetProperty()), fields (GetField()), and
events (GetEvent()). All of these also have plural versions to get a list of members—
for example, GetFields()returns an array of FieldInfo objects. If you’ve also
inferred that Info is in the class name for all the reflection query results, you’d be cor-
rect. There are MethodInfo, FieldInfo, EventInfo, and so on. 

 If the method or class is generic, things can get a little confusing in terms of how
they’re defined and retrieved with the Reflection API. As you saw in the preceding sec-
tion, you use the bracket syntax to get the generic type in typeof. But if you know
what type you want to specify for the generic in Lazy<T>, you can do that as well:

var openLazyType = typeof(Lazy<>);
var closedLazyType = typeof(Lazy<int>);

http://mng.bz/Gwau
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The first way gives you an open generic type, because not all the generic values have
been specified. The second one specifies a value for T, so it’s a closed generic type. If
you have a type and you have no idea if it’s generic, use IsGenericType. But if you
want to know if it’s open or closed, use IsGenericTypeDefinition—that returns true
if the current type is generic and open. You can make a closed generic type from an
open one by using MakeGenericType():

var openLazyType = typeof(Lazy<>);
var closedLazyType = openLazyType.MakeGenericType(typeof(int));

There’s also a method on a Type called GetGenericArguments() that returns an array
of Type objects if you want to know about the generic values.

2.2.3 Gathering attribute data

It’s one thing to be able to retrieve member information from an assembly, but the
interesting reflection stuff comes in doing something with those discovered members,
such as invoking a method or decorating a class with custom information. Performing
these actions usually requires adding more information to a member so the reflection
code knows to do something with that member. In a unit-testing framework like MSTest,
you mark methods that should be run as a unit test with the TestMethodAttribute. In
WCF, you can use the KnownTypeAttribute to specify which messages can be used in
serialization scenarios for other message types. These custom attributes (which derive
from the Attribute class) are stored as custom metadata in the assembly, and the
Reflection API makes it easy to find this information.

 Most every class in the Reflection API inherits from MemberInfo, which implements
the ICustomAttributeProvider interface. This interface defines two overloaded Get-
CustomAttributes() methods, which allow you to query a member to see if it con-
tains the attribute you’re looking for:

var testAttribute = someMethod.GetCustomAttributes(
  typeof(TestMethodAttribute), true);

Unfortunately, the result from GetCustomAttributes() is an object array, so you have
to cast the results to the attribute type you’re looking for. You can use IsDefined() to
make sure the attribute is even there before you retrieve the attribute’s data:

if(someMethod.IsDefined(typeof(TestMethodAttribute), true))

You could create a generic extension method to hide some of the type-casting mess
you run into with GetCustomAttributes(), but there’s also a method called Get-
CustomAttributeData() that returns a list of CustomAttributeData objects. These
objects contain the attribute data, separated between constructor and named argu-
ments, and also the attribute type (via the DeclaredType property on the Constructor
value), allowing you to get the attribute data and the attribute itself without any casts.
The following LINQ statement gets all of the test methods from a specific assembly:

var tests = from type in assemblyWithTests.GetTypes() 
            from method in type.GetMethods(
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              BindingFlags.Public | BindingFlags.Instance)
            from attributeData in method.GetCustomAttributesData() 
            where attributeData.Constructor.DeclaringType == 
              typeof(TestMethodAttribute)
            select method; 

2.2.4 Executing code

The last major aspect of reflection is code execution, which includes creating objects,
invoking methods, and writing property values. Let’s take a look at all three examples
to see how they’re done.

 If you have a type and you want to create an instance of it, look no further than
Activator.CreateInstance():

var lazyIntType = typeof(Lazy<int>);
var lazyInt = Activator.CreateInstance(lazyIntType);

In this case, CreateInstance()looks for a public, no-argument constructor on the
type provided, invokes that constructor, and returns the object typed as an object.
Unless you plan on using the result for other Reflection API calls, it’s going to be
pretty useless to you. You can typecast the return if you know what the type will be:

var lazyInt = Activator.CreateInstance(lazyIntType) as Lazy<int>;

If you’re creating objects that you know implement a specific interface or have a base
class somewhere in its inheritance hierarchy, this is a feasible approach. You can also
use a generic version of CreateInstance():

var lazyInt = Activator.CreateInstance<Lazy<int>>();

In this case, because you already know what the type is, there’s no need to pass it into
the method.

 You’re not limited to calling only the no-argument public constructor on a type. In
fact, it’s not uncommon to find classes that don’t have this kind of constructor defined
for design reasons. If you wanted to create a Lazy<int> that has a value factory
method, you can do this:

var lazyInt = Activator.CreateInstance(lazyIntType, 
    new Func<int>(() => { return new Random().Next(); } )) as Lazy<int>;

There are other overloads that allow you to specify AppDomains, ActivationContexts,
and so on—feel free to explore these other options.

 If you want to invoke a method on an object via reflection, all you need is a Method-
Base object. This is the base class for both ConstructorInfo (returned by calling Get-
Constructor()) and MethodInfo (returned by calling GetMethod()). MethodBase
defines a method called Invoke() with a number of overrides, two of which we’ll focus
on. The first takes an object array, which maps to the arguments of the constructor.
The following listing shows how you create a Lazy<int> via a ConstructorInfo
object. The return value from Invoke() is the new object.
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var lazyIntType = typeof(Lazy<int>);
var lazyConstructor = lazyIntType.GetConstructor(
  new Type[] { typeof(Func<int>) });

var lazyInt = lazyConstructor.Invoke(new object[] {
  new Func<int>(
    () => { return new Random().Next(); } ) }) as Lazy<int>;

Console.Out.WriteLine(lazyInt.Value);

The other Invoke() is what you use to call a method on a class or object. The first
argument is the object you want to invoke the method on (or null if the method is
static). The second argument is an object array that contains all the arguments to the
method. The following listing demonstrates how you’d dynamically call the Next()
method on a Random object to get a value between 0 and 9.

var randomType = typeof(Random);
var nextMethod = randomType.GetMethod("Next",
  new [] { typeof(int), typeof(int) });
var random = Activator.CreateInstance(randomType);
Console.Out.WriteLine(nextMethod.Invoke(random, 
  new object[] { 0, 10 }));

Now that you’ve seen what reflection lets you do as a developer, you may be conjuring
up elegant, flexible architectures that will heavily involve the dynamic aspects that
reflection provides. Although reflection can solve some problems in a concise man-
ner, you should be aware of two of its pitfalls: performance and brittleness.

2.3 Impractical uses of reflection
Reflection is a powerful API that almost tempts you to use it liberally. Section 2.4
shows the effective use of reflection to solve some tricky problems, but we feel that
covering some of the negative applications of reflection is necessary. Knowing reflec-
tion’s potential issues will help you avoid common problems with this API. After
reading this section, you’ll understand why reflection shouldn’t be used in large
doses in your application. 

2.3.1 Performance concerns with reflection

The first concern, performance, has to do with the work the Reflection API must per-
form. For example, calling a method like Next() on a Random object directly, like this:

var value = new Random().Next();

The compiler will know the tokens for the Random type reference and the Next()
method reference, and this direct path is the speediest you can take. Granted, a fair
amount of detail goes into the definition of a .NET object at runtime, but the call site

Listing 2.1 Creating an object via ConstructorInfo

Listing 2.2 Invoking a method on an object
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is known, and getting that random value is a fairly simple process. But if all you knew
was that there was a type called System.Random and a method called Next via their
names, you’d need to use reflection to find those members and eventually invoke a
method, which takes time. How much time? The following listing is a simplistic stress
test to call Next() on a new Random object 500,000 times. 

var stopwatch = Stopwatch.StartNew();

for(var x = 0; x < 500000; x++)
{
  var random = new Random().Next();
}

stopwatch.Stop();
Console.Out.WriteLine(stopwatch.Elapsed.ToString());

This isn’t want you’d want to do to generate half a million new random values; you’d
use the same Random object for each call. But the point is to compare object creation
and method invocation with reflection. The following listing is conceptually the same
as listing 2.3, except reflection is used.

var stopwatch = Stopwatch.StartNew();

for(var x = 0; x < 500000; x++)
{
  var randomType = Type.GetType("System.Random");
  var nextMethod = randomType.GetMethod("Next", Type.EmptyTypes);
  var random = nextMethod.Invoke(
    Activator.CreateInstance(randomType), null);
}

stopwatch.Stop();
Console.Out.WriteLine(stopwatch.Elapsed.ToString());

On average, we saw total times for the direct approach around 2 seconds, whereas the
reflection approach took 7 seconds. As with any performance test, your mileage may
vary, and depending on what an entire application is doing, the overhead of reflection
may be acceptable compared to having some flexibility. You can also gain performance
by moving the Type.GetType() lookup call outside of the for loop. For us, that reduced
the total time for the reflection approach to 3.5 seconds. But in general, you’ll always
encounter slower execution time when using a reflection-based approach.

2.3.2 Brittleness and reflection
The other concern is brittleness. If you write code like this

var value = new Randon().Next();

the compiler will inform you about the incorrect type name (we assume you don’t
have a type called Randon). The error is caught right away when you compile the code.

Listing 2.3 Stress-testing a method invocation directly

Listing 2.4 Stress-testing a method invocation via reflection
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Or, if this code worked before, but a new version of Random changes Next() to Next-
Value(), you’ll find out soon enough. But if you write code like

var value = Type.GetType("System.Randon");

you won’t have any idea that you have a bug in the code by running the compiler. As
we stressed in section 2.2.1, having good unit tests for any code base is critical, and this
is true in particular for dynamic, reflection-based code. You need to ensure that the
strings you’re passing into calls like GetMethod() and GetType() are correct and
resolve to members you’re expecting.

 Also, recall in section 2.2.2 where you saw that reflection gives you access to non-
public members. Using these members in your code is highly discouraged because
there’s no guarantee that the names will stay the same, or that the members won’t dis-
appear entirely from version to version. For example, in the 4.0 version of .NET, the
Thread class has a private field of type IntPtr called DONT_USE_InternalThread. That
name alone should be a warning to you to not mess with it in any way, but let’s say you
did for some bizarre reason. What happens in a future version of .NET? You’d better
have a lot of tests around your code to make sure nothing breaks, because a simple
name change will break your assumptions in the future.456

2.4 Practical uses of reflection
Now that you’ve seen what reflection can do, you may be wondering what some practi-
cal applications of the API are. In this section, we go through three scenarios using dif-
ferent Reflection APIs:

■ Eliminating error-prone configuration
■ Creating an informative string representation of an object
■ Enabling a simplistic duck-typing system.

Uses of non-public members
There are always exceptions to the rule, and that’s true with the issue of using non-pub-
lic members. An article by one of the authors4 shows how to mock an HttpContext
object with reflection. Another article5 demonstrates how you can return exception infor-
mation over the wire in WCF. A third article6 illustrates how you can reverse a string via
internal member manipulation. In some cases (like the HttpContext issue), changing
hidden information is the only way to achieve a desired solution. In other cases (like the
string reversing scenario), it’s purely academic (and quite dangerous!). If you think you
have no other choice but to use these private members, make sure you understand the
potential dangers and guard your code accordingly (with strong unit tests, safe fallback
paths in code when members can’t be found, and so forth).

4 Jason Bock (blog), “Adding Session State to a Mock HttpContext Object,” September 2005, http://mng.bz/V9r3.
5 Oleg Sych (posted by), “Simplifying WCF: Using Exceptions as Faults, July 2008,” http://mng.bz/GC7R.
6 Jason Bock (blog), “Being Evil with a DynamicMethod, Class Internals, and Unsafe Code,” July 2008, http://

mng.bz/2i0t.

http://mng.bz/V9r3
http://mng.bz/GC7R
http://mng.bz/2i0t
http://mng.bz/2i0t
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These examples illustrate how reflection provides elegant solutions to typical pro-
gramming problems. We close out the chapter by reviewing all the examples together
to find common patterns that will be useful for you to determine when reflection
should be used.

 Let’s start by looking at WCF and the issues surrounding known types.

2.4.1 Automatically registering known types in WCF

In .NET, the common way of defining services is done through Windows Communica-
tion Foundation (WCF). These classes provide a number of classes and interfaces you
can use to create services and pluggable behaviors to extend the request/response
pipeline. Although WCF can reduce the amount of work needed to set up and call a
service, it can also create subtle programming concept mismatches. Specifically, inheri-
tance doesn’t act like you think it should.

 Here’s a concrete example. Let’s say you want to create a processor to handle dif-
ferent kinds of messages that you want to track in your application. You create a base
type called Message:

[DataContract]
public class Message
{
  [DataMember]
  public string Data;

  public Message() 
    : base() 
  {
    this.Data = "Unknown";
  }
}

Then you start defining different messages, such as tracking when an application
closes on a given machine:

[DataContract]
public sealed class ApplicationClosedMessage : Message
{
  [DataMember]
  public string MachineName;

  public ApplicationClosedMessage (string machineName)
    : base() 
  {
    this.MachineName = machineName;
    this.Data = "Application has closed.";
  }
}

Here’s the key point to take away from these two classes. Note that Application-
ClosedMessage inherits from Message. Object-oriented developers are comfortable
with inheritance and when its use is appropriate, and in this case it seems reasonable
enough to design messages that use a common base class.
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 The problem with WCF is that it doesn’t “know” anything about objects. Even
though you create classes and objects in your WCF-based code, at the end of the day
it’s all about sending messages to services. If you define your contract like this

[ServiceContract]
public interface IMessageProcessor
{
  [OperationContract]
  string Process(Message fruit);
}

and then implement the contract like so

[ServiceBehavior]    
public class MessageProcessor : IMessageProcessor
{
  [OperationBehavior]
  public string Process(Message message)
  {
    return message.Data;
  }
}

you’re in trouble! Sure, the compiler will happily say all is well with the world, but
things won’t run. If you try to pass in a Message object to the processor like

var channel = new ChannelFactory<IMessageProcessor>(
  string.Empty).CreateChannel();
var result = channel.Process(new Message());

you’ll get the right response. But try passing in an ApplicationClosedMessage:

var channel = new ChannelFactory<IMessageProcessor>(
  string.Empty).CreateChannel();
var result = channel.Process(
  new ApplicationClosedMessage("\\SomeMachine"));

This will fail miserably at runtime—you’ll get a CommunicationException. Again, WCF
is expecting a Message value to come through, so when it “sees” Application-
ClosedMessage, it gets upset.

NOTE The preceding example is a simplistic version of a real-world issue one
of the authors ran into. The system had Process() defined as a one-way opera-
tion, which means that the operation invocation is “fire-and-forget”—the cli-
ent doesn’t have to wait for the service to finish. One-way operations don’t
return a value, but making Process() return a value makes it easier to create
tests that you can read without having to know a lot about WCF.

There’s a way around this via known types. A known type is self-explanatory: it’s a way to
tell WCF to “know” about a type. When you do this, it allows messages to come through
even if they’re subclasses. You can handle known types in WCF in a couple of different
ways. One way is through configuration. You can define a known type in your .config
file by adding a <system.runtime.serialization> element (which would go under
the <configuration> element), like this:
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<system.runtime.serialization>
  <dataContractSerializer>
    <declaredTypes>
      <add type="KnownTypes.Messages.Message, KnownTypes">
        <knownType
          type="KnownTypes.Messages.ApplicationClosedMessage, 
          KnownTypes"/>
        </add>
      </declaredTypes>
  </dataContractSerializer>
</system.runtime.serialization>

That, however, can be a maintenance headache. The problem is when you add a new
message to your application. If you forget to visit the .config file and add a new <known-
Type> element, or if you have one character wrong, you’ll get an error when that new
message is passed to the service. Sure, good unit tests will catch that, but wouldn’t it be
even better if you could make known type registration automatic?

 Fortunately, you can. WCF defines a ServiceKnownTypeAttribute that you can use
to specify a method on a class that will provide a list of known types. Here’s an
updated version of IMessageProcessor with ServiceKnownTypeAttribute:

[ServiceContract]
[ServiceKnownType("GetMessageTypes",
  typeof(MessageProcessorKnownTypesProvider))]
public interface IMessageProcessor
{
  [OperationContract]
  string Process(Message fruit);
}

The first value is the name of the method to invoke on the type you specify in the sec-
ond argument. This method has a couple of restrictions:

■ It must be static.
■ It must take one, and only one, argument that implements ICustomAttribute-

Provider.
■ It must return a list of known types.

NOTE It’s interesting to see that WCF is using reflection under the covers. It
has to look for this attribute and, if the method exists, it must find a method
on a given type. It would be interesting to see whether you can reproduce this
functionality, given what you know about reflection.

By using some reflection goodness, you can easily make known type discovery a
breeze. The following listing demonstrates how to find all the types that inherit from
Message and register them as known types.

public static class MessageProcessorKnownTypesProvider
{
  private static Type[] knownTypes;

Listing 2.5 Automatically discovering known types
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  public static Type[] GetMessageTypes(
    ICustomAttributeProvider attributeTarget)
  {
    if(MessageProcessorKnownTypesProvider.knownTypes == null)
    {
      var types = new List<Type>();
      var messageType = typeof(Message);

      foreach(var type in 
        Assembly.GetAssembly(
          typeof(MessageProcessorKnownTypesProvider)).GetTypes())
      {
        if(messageType.IsAssignableFrom(type))
        {
          types.Add(type);
        }
      }

      MessageProcessorKnownTypesProvider.knownTypes = 
        types.ToArray();
    }

    return MessageProcessorKnownTypesProvider.knownTypes;
  }
}

NOTE In the example in listing 2.5, all the messages are defined in the same
assembly as the service contracts and services. We did this for simplicity; in
real-world WCF applications, these entities are usually separated into different
assemblies. But it’s not hard to change the code in listing 2.5 to discover
known types in different assemblies. 

You look through all the types within the current assembly and see if they inherit from
Message via IsAssignableFrom(). This method looks at the type given and checks to
see whether it’s a subclass of the current type. If it does, the method adds it to the list.
The nice thing about this method is that it looks at the inheritance hierarchy. Looking
to see if a type is equal to another type isn’t sufficient. If the if statement looked like

if(typeof(Message).IsAssignableFrom(type))

it would fail. You can’t use the is keyword either, because that checks an object to see
whether it’s a kind of type. In this case, you have two types, so that’s not an option. But
IsAssignableFrom() is exactly what you need. If you add a new message to this assem-
bly, it’ll automatically work when the updated service is deployed.

 You now have seen how a little bit of reflection can eliminate manual configuration
issues. Let’s take a look at another example that handles ToString() for any object.

2.4.2 Dynamic implementation of ToString

Most .NET developers know that there’s a method on the Object class called ToString().
There’s no requirement to override it; you could theoretically spend all your time as a
developer writing .NET code and never do anything with ToString(). But it can be a
handy little method during debugging time.
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 Let’s say you have a Customer class that looks like this:

public abstract class Customer : ICustomer
{
  protected Customer()
    : base()
  {
    this.Id = Guid.NewGuid();
  }

  public int Age { get; set; }
  public Guid Id { get; set; }
  public string FirstName { get; set; }
  public string LastName { get; set; }
}

And the ICustomer interface is defined as follows:

public interface ICustomer
{
  int Age { get; set; }
  Guid Id { get; set; }
  string FirstName { get; set; }
  string LastName { get; set; }
}

Now, let’s say you’ve created an implementation of Customer in your application:

public sealed class CustomerReflection : Customer { }

As development continues on the code base, you run into a bug that requires you to
crack open the debugger. During your debugging session, you hover over an instance
of CustomerReflection. Figure 2.2 shows the information Visual Studio gives you
about that object.

 The debugger invokes ToString() on the object and displays it. The default imple-
mentation of ToString() is to return the name of the class, which isn’t that helpful or
informative most of the time. Sure, you can drill into the tree node to see more infor-
mation, but sometimes it’s helpful to get a quick indication that your object is in
the correct state, or that it’s the one you want to look at depending on the state of the
object, which is usually the case when you’re inspecting the contents of lists and dic-
tionaries. Figure 2.3 shows what happens when you override ToString() with a
descriptive implementation.

 This approach takes all the properties and prints out their names and related val-
ues, separated by a double pipe (||). Here’s what that code would look like if you did
it by hand:

Figure 2.2 Object description in the 
debugger. As you can see, you don’t 
get a lot of information if you don’t 
override it.



57Practical uses of reflection
public static class Constants
{
  public const string Separator = " || ";
}

public sealed class CustomerHardCoded : Customer
{
  public override string ToString()
  {
    return new StringBuilder()
      .Append("Age: ").Append(this.Age)
      .Append(Constants.Separator)
      .Append("Id: ").Append(this.Id)
      .Append(Constants.Separator)
      .Append("FirstName: ").Append(this.FirstName)
      .Append(Constants.Separator)
      .Append("LastName: ").Append(this.LastName).ToString();
  }
}

It’s not that hard to do, but doing it for every class you defined would get tedious.
Plus, it’s prone to error—you could easily forget a property or a separator. With reflec-
tion, you can create a generalized implementation of this idea with little effort. The
following listing demonstrates code that combines reflection, an extension method,
and some LINQ to create a description for any object.

public static class ObjectExtensions
{
  public static string ToStringReflection<T>(this T @this)
  {
    return string.Join(Constants.Separator,
      new List<string>(
        from prop in @this.GetType().GetProperties(
          BindingFlags.Instance | BindingFlags.Public)
        where prop.CanRead
        select string.Format("{0}: {1}", 
          prop.Name, 
          prop.GetValue(@this, null))).ToArray());
  }
}

There’s a lot going on in those 14 lines of code, so let’s start from the inside and work
our way out. The LINQ query looks for all the public instance properties on the given
object’s type and filters for the ones you can read from. It takes those PropertyInfo
objects and uses the Name property and GetValue() method to create a descriptive

Listing 2.6 Using reflection to generate a description of an object

Figure 2.3 Rich description of an object 
in the debugger. All the readable 
properties are listed with their names 
and values.
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string for each object. The results of the LINQ query are then passed into Join() on
the string class, which takes each descriptive string and joins them up, separating
them with the || (double-pipe) separator. 

 With this in place, you can create a CustomerReflection class that uses the exten-
sion method:

public sealed class CustomerReflection : Customer
{
  public override string ToString()
  {
    return this.ToStringReflection();
  }
}

If you create an instance of this class

new CustomerReflection()
{
  FirstName = "Jason",
  LastName = "Reflection",
  Age = 20
}

you’ll get the following value when you call ToString():

@"Age: 20 || Id: e114900f-0257-48e0-8b1e-01453123a4bf || 
  FirstName: Jason || LastName: Reflection"

That’s a nice application of reflection, but it’s not perfect. The main issue is perfor-
mance. Using some simple performance tests, we’ve found that the hard-coded
approach is almost an order of magnitude faster than the reflection one. But let’s face
it—you probably won’t call ToString() a lot in your application. In fact, it’s uncom-
mon to ever call ToString() in code. Therefore, even if the reflection approach takes
a thousandth of a second, you’ll never notice it. Later on in the book, we show you
other dynamic techniques that are as fast as the hard-coded approach, yet are general-
ized like the reflection extension method.

 Let’s close out this section by seeing how reflection can support duck typing.

2.4.3 Invoking arbitrary methods on objects

If you’ve ever wanted different objects to support the same functionality (such as
implementing a Drive() method), you created either a base class or an interface that
defined the method, and subclasses would implement it appropriately. Therefore, if
you have an IDrive interface like

public interface IDriver
{
  void Drive();
}

you could create a method that told any object to drive, so long as it implemented
that interface:
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public sealed class Golfer : IDriver
{
  public void Drive()
  {
    // Drive the ball.
  }
}

But there’s a less type-safe yet more flexible version of this strategy: duck typing.7 The
key difference between duck typing and the previous approach is that duck typing
doesn’t rely on inheritance hierarchies. Instead, all you need is a method that matches
what you’re looking for. The existence of the method with the correct signature will
make it work. Duck typing is also used to allow developers to create enumerable
objects without implementing IEnumerable<T> and IEnumerator<T>.8

 It may surprise you that duck typing already exists in some form or another in
.NET. One example is operator overloading. When you overload an operator, the com-
piler ends up creating a method with a well-known name. That’s what’s used when you
use the operator. 

 Here’s a simplistic Range class that overloads the addition operator:

public sealed class Range
{
  public static Range operator +(Range a, Range b)
  {
    return new Range(Math.Min(a.Minimum, b.Minimum), 
      Math.Max(a.Maximum, b.Maximum));
  }

  public Range(double minimum, double maximum)
  {
    this.Minimum = minimum;
    this.Maximum = maximum;
  }

  public override string ToString()
  {
    return string.Format("{0} : {1}", 
      this.Minimum, this.Maximum);
  }

  public double Maximum { get; private set; }
  public double Minimum { get; private set; }
}

Adding two Range objects together like this

var rangeOne = new Range(-10d, 10d);
var rangeTwo = new Range(-5d, 15d);
Console.Out.WriteLine(rangeOne + rangeTwo);

7 “Duck typing,” http://en.wikipedia.org/wiki/Duck_typing.
8 Krzysztof Cwalina (blog), “Duck Notation,” July 2007, http://mng.bz/3lXH.

http://en.wikipedia.org/wiki/Duck_typing
http://mng.bz/3lXH
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produces "-10:15" on the command line as expected. But what’s going on behind
the scenes?

 When you overload the addition operation, the C# compiler names the method
op_Addition and marks it with a special metadata flag called specialname. You can’t
merely name a static method op_Addition and use it for addition, because it doesn’t
have that flag. The compiler sprinkles that in for you. But it has to use the name
op_Addition because that’s the standard name for overloading + in .NET. Furthermore,
it has to take two arguments. Therefore, if it quacks like a +, it must be an addition.

 Let’s see how you can implement duck typing with reflection. Let’s say you had two
classes that both had Drive() methods but didn’t share a base class:

public sealed class Golfer
{
  public string Drive(string technique)
  {
    return technique + " - 300 yards";
  }
}

public sealed class RaceCarDriver
{
  public string Drive(string technique)
  {
    return technique + " - 200 miles an hour";
  }
}

Duck typing says, “Well, they both look like they Drive(), and they act like they
Drive(), so let’s make them Drive().” You don’t care that there’s no common class
between them; the method definition itself is what makes them common.

 With C# 4.0, the dynamic keyword gives you a somewhat limited version of duck
typing out of the gate. For example, you can do this:

dynamic caller = new Golfer();
Console.Out.WriteLine(
  caller.Drive("Dynamic"));

That gets the job done. But let’s take it another step by allowing the method name to
be specified by the caller at runtime. The following listing shows an extension method
that uses the capabilities of reflection to invoke a desired method.

public static class ObjectExtensions
{
  public static object Call(this object @this, 
    string methodName, 
    params object[] parameters)
  {
    var method = @this.GetType().GetMethod(methodName, 
      BindingFlags.Instance | BindingFlags.Public, null,
      Array.ConvertAll<object, Type>(

Listing 2.7 Invoking a method via its name
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        parameters, target => target.GetType()), null); 
    return method.Invoke(@this, parameters);
  }
}

You look for the method based on the name and the types of the arguments given. In
this case, the lookup is kept simple by only looking for public instance methods. You
get the argument types via Array.ConvertAll(), which tells reflection which specific
method to use in case the method is overloaded. 

Now, you can call any method you want with relative ease:

Console.Out.WriteLine(
  new Golfer().Call("Drive", "Reflection"));
Console.Out.WriteLine(
  new RaceCarDriver().Call("Drive", "Reflection"));

With this example, the name is specified in the code, but you could retrieve that name
from myriad sources, such as an argument to the console window or a configuration file.
If the method can’t be found, an exception will be thrown, but for situations where you
need the flexibility to invoke methods, reflection can easily provide that capability.

2.4.4 Quick summary of reflection examples

Before we close out this chapter, let’s go over some of the commonalities of the exam-
ples in this section, focusing on stability and use.

 The first thing to notice is that in two of the three examples, the code is resilient to
name changes. For example, in the WCF example, it doesn’t matter if a new known
type is added to the assembly—the provider automatically picks up new subclasses
without breaking at runtime. If you changed the name of the base message class,
you’d know right away when you compiled the code. Similarly, the ToString() imple-
mentation doesn’t error out if a new property is added to an object or one is removed;
it’ll work fine either way. The method invocation example is brittle because the name
is hard-coded in a string, and the compiler won’t help you out here in figuring out
whether that name is correct. We hope your unit tests uncover the errors before you
run the code in production.

 The second aspect to notice is the size of the code that uses reflection. In all three
examples, not many lines of code are needed to create some interesting (and useful)
implementations. This is fairly typical when reflection is used in an application.

Real-world use of run-time method invocation
There’s one well-known .NET framework that uses this idea of resolving a method call
at runtime: CSLA (www.lhotka.net/cslanet/). It’s primarily used for business object
development and uses something called a DataPortal to manage object lifetime.
The CSLA engine uses metaprogramming (to a degree) to determine which Data-
Portal_XYZ method to invoke based on the type of criteria given.

www.lhotka.net/cslanet/


62 CHAPTER 2 Exploring code and metadata with reflection
Having significant portions of the code base use reflection is uncommon. What’s com-
mon is to see it used in small, effective portions where the flexibility outweighs any
negative issues that reflection brings to the table. This isn’t a hard-and-fast rule,
because each problem you encounter as a developer can be solved in a number of
ways. Sometimes using a liberal amount of reflection may be the best solution. But if
you’re using a lot of it all the time, you may want to rethink your result. A little reflec-
tion is usually all you need to attack a problem in an elegant manner.

2.5 Summary
In this chapter, you got a taste of metaprogramming via reflection. You discovered
how to use the Reflection API to create dynamic, generic implementations. You also
saw some potential pitfalls of reflection and a number of examples where reflection
works best in an application. At this point, you should have a good understanding of
how to use metaprogramming via the Reflection API to make your code flexible and
adaptive to change within a system.

 So far, we’ve restricted ourselves to working with code that already exists at run-
time. In part 2, you’ll expand your metaprogramming view by creating new code at
runtime that you can use to solve all sorts of interesting problems. Hang on, the ride is
about to get more interesting!



Part 2

Techniques for
generating code

The next five chapters move into different tools and approaches to facilitate
metaprogramming. 

 You’ll focus on template-based metaprogramming using Microsoft’s Text Tem-
plate Transformation Toolkit (T4) and we’ll emphasize the DRY approach. In
chapter 4, attention is turned to the CodeDOM and underlying code probivers. 

 You’ll emit code at runtime with the Emit API (chapter 5), providing a per-
formance boost. You’ll use expressions to create and modify existing expressions
in chapter 6 and you’ll learn how to modify assemblies to inject new code in the
final chapter (chapter 7) in this middle part of Metaprogramming in .NET. 





The Text Template
Transformation Toolkit (T4)
Pattern recognition and the beneficial repetition of proven patterns are considered
to be excellent qualities in a software developer. Software developers and architects
who have great pattern vocabularies are often the best among us. These are the devel-
opers who rarely try to reinvent complex solutions from scratch. Instead, they rely
on well-known best practices, borrowing from the demonstrated success of others
to produce their own great works. Code generation, which is viewed by many as a
form of metaprogramming, is typically a key part of their successful development
methodology. This chapter focuses on template-based metaprogramming using
Microsoft’s Text Template Transformation Toolkit (T4) to learn how these master
developers think and work.

 Among the SOLID object-oriented design principles we discuss in the opening
chapter, the DRY (Don’t Repeat Yourself) principle speaks plainly about the perils
of repetition. According to DRY, repetition is bad because it decentralizes the

In this chapter
■ Thinking of generics as templates
■ Introducing T4 and exploring useful 

T4 examples
■ Using T4 inside Visual Studio
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authority for business logic in your code, leading to ambiguous, potentially conflicting
implementations. That can lead to higher maintenance costs and potential errors as
systems evolve. Pattern-based code generation based on templating is all about repeti-
tion, however. Is repetition a good thing or a bad thing? The answer is that it depends
on how and why you’re repeating the code.

 Developers who are beginning to study the SOLID principles often misinterpret
DRY to mean “don’t repeat your code.” It’s true that manually duplicated code is
bad practice, mainly because of the maintenance problems that flow from the prac-
tice. However, the DRY principle speaks to a higher-level set of concerns, namely:
the authority, abstraction, and disambiguation of business logic. Pattern-based code
generation systems that rely upon repetition by design don’t typically violate the
DRY principle because they reserve authority and abstraction to the templates.
Beware of template-driven systems that allow or encourage developers to edit code
that’s emitted, however, because they will almost certainly force developers to vio-
late the DRY principle.

 Concerning DRY, the answers are uncomplicated. If feature authority stays with the
template, all the variations that might be generated from it won’t violate the DRY prin-
ciple. This will be true even though there may be many similar versions of the same
code floating about in your application.

 You can refactor code in your templates into base classes to solve the code repeti-
tion problem. That’s a good, old-fashioned, object-oriented design skill being brought
to bear. You can also use compiler tricks like partial classes and partial methods to
expose regeneration-safe extension points into your templates. But as long as you
understand that the DRY principle is more concerned with where the authority for an
application’s features lies, you’ll become comfortable with the art of doing code gen-
eration with templates. In cases where programmer comprehension can be enhanced
by exposing domain-specific metadata as class features, we believe that you’ll find
template-based metaprogramming to be superior to more traditional specialization
techniques like class inheritance and polymorphism. Type-safe, schema-specific classes
generated from a database are perhaps the most common and most compelling exam-
ples of the power of template-based metaprogramming.

 This chapter begins by examining how generics are a simple but powerful form
of metaprogramming used by nearly every .NET developer today. We extend that
line of thought into template-based metaprogramming, looking specifically at how
you can use T4 to introduce flexibility into scenarios where generics present techni-
cal challenges. Then we dive into the some details of T4, helping you to understand
the architecture as well as the way in which Visual Studio integrates features to sim-
plify code generation.

3.1 Thinking of generics as templates
In the .NET languages, generics may be the most commonly used form of algorithmic stan-
dardization. To demonstrate the connection between generics and metaprogramming,
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think about a simple function that returns the larger of two values. In C#-like pseudo-
code, the appropriately named max function might be written like this:

T max<T>(T left, T right)
{
  return left < right ? right : left;
}

Although that’s a rather nice-looking concept for how the max function could be writ-
ten, it won’t compile as C# because the standard C# less-than operator (<) can’t be
applied to generic arguments. You could rewrite max as generic_max using a con-
straint like this:

T generic_max<T>(T left, T right)
  where T : IComparable<T>
{
  return (left.CompareTo(right) < 0) ? right : left;
}

The generic_max method will compile as C# and work for any parameterized type
that implements the IComparable<T> interface because of the where constraint that
was added. But what about those types that implement the older IComparable inter-
face? Could you add another constraint to generic_max to solve the problem?

T generic_max<T>(T left, T right)
  where T : IComparable, IComparable<T>
{
  return (left.CompareTo(right) < 0) ? right : left;
}

Unfortunately, these constraints when specified together support only the parameter-
ized types that implement both of the interfaces, not one or the other. You’ll almost cer-
tainly encounter types that implement only one of the comparison interfaces, so this
is something of an obstacle.

 Some languages support automatic generalization and deep type inferencing to solve
this problem in a much more straightforward way. Here’s how a generic max function
can be written in F#, along with some examples of its use:

let max left right = if left < right then right else left;;

max 1 2;;             // max of integers returns 2
max 3.0 4.0;;         // max of real numbers returns 4.0
max "hello" "world";; // max of strings returns "world"

This max function doesn’t have any generic syntax markers in its definition, but it’s
definitely considered to be generic by the compiler. In fact, the signature for the func-
tion returned by the compiler reads like this:

'a -> 'a -> 'a

This is F#’s rather cryptic way of saying that the function, given two parameters of a to-
be-determined type, will return a value of that same type. That sounds as generic as it
truly is. Peeking back at the function definition, there are no indications of a required
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data type expressed or implied in the code. The F# compiler did a good job of keep-
ing the intention of the algorithm intact without introducing any kinds of constraints
or other limitations on the programmer. The magic of this, if there is any, lies in the
generic implementation of F#’s standard less-than (<) operator. F#’s deep type infer-
encing also helps by allowing the generalization expressed in the operator to flow into
functions that invoke it, like max.

 As you ponder that, it may become apparent that the generic F# max function isn’t
a function in the ordinary sense. Instead, it’s a kind of model or template that expresses
the intent of some future functions that may be needed to deal with concrete types. As
the constraint added to the C# generic_max method proves, the template is depen-
dent only on the ability to rank two values of a known type. In C#, you could try to
mimic the dynamism that you perceive in the F# implementation by using the Reflec-
tion API. In this way, you could try to get around the problem of needing to support
the IComparable interface or the IComparable<T> interface as separate and equally
sufficient constraints. The following listing shows an attempt to rewrite the generic_max
function as dynamic_max to do that.

public static T dynamic_max<T>(T left, T right)
{
  if (left is IComparable<T>)
    return ((left as IComparable<T>).CompareTo(right) < 0)
      ? right : left;

  if (left is IComparable)
    return ((left as IComparable).CompareTo(right) < 0)
      ? right : left;

  throw new ApplicationException(String.Format(
       "Type {0} must implement one of the IComparable or " +
    "IComparable<{0}> interfaces.", typeof(T).Name));
}

The generic dynamic_max function begins by testing the parameterized type for its
implementation of IComparable<T>. If the left operand implements IComparable<T>,
it’s cast to that type, and the CompareTo member is invoked passing the right operand
as the argument. This comparison yields the ranking required to determine which oper-
and value is larger. If the first interface isn’t implemented, the left operand is tested for
implementing the nongeneric IComparable interface instead. If that second interface is
implemented, its CompareTo function is invoked to rank the operands. An exception
is thrown if neither required interface is supported by the parameterized type.

 The dynamic_max function shown in listing 3.1 is admittedly inefficient. Can you
imagine having to do all that reflection every time you needed to get the larger of two
values? That’s the kind of bad dynamic software design you may have been warned
about when you began your journey to become a metaprogrammer. Writing code like
that should be avoided at all cost.

Listing 3.1 dynamic_max as a dynamic, generic (and inefficient) max function
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 To fix the performance problem with dynamic_max, you could try to implement
some kind of dictionary that caches the comparison strategy for each type that’s
encountered at runtime. At least then the expensive reflection would be performed
only once per parameterized type. But that’s somewhat complex, too. This approach
begs the question: “Do we need the max function to be completely dynamic at run-
time?” After all, if the data types you’re working with are well-known at compile time,
why go to all that trouble of making the function dynamic at all?

 If only there were a tool for capturing the comparison strategy at compile time for
each of the data types you’ll need to support at runtime. If such a tool existed, you
could generate a class that contains highly optimized overloads of all of the max func-
tion variants that you’ll need later on.

 As it turns out, certain versions of Microsoft Visual Studio 2008 and Microsoft
Visual Studio 2010 and 2012 contain such a tool—called the Text Template Transfor-
mation Toolkit, or T4 for short. In this chapter, we show you how to use T4 to generate
C#, XML, T-SQL, and other kinds of code inside Visual Studio using templates similar
to the generics in C# or Visual Basic you may already be familiar with. Let’s start by
taking a look at how to solve the problem of creating a set of max function variants at
compile time using T4.

3.2 Introducing T4
You’ll delve into the specifics of T4 syntax as we go along. Let’s jump right in by exam-
ining listing 3.2, which contains a T4 template that creates a class called greater. The
goal of the class is to provide strongly typed variants of the max function we toyed with
in the opening section of this chapter. Each of those overloaded functions in the
greater class is named of, which seems rather odd at first glance. But the naming is
deliberate because, using that greater class, you’ll be able to write code that reads
smoothly like English text. Here’s an example of using the greater class to obtain the
greater of two integers:

int x = 7, y = 11;
Console.WriteLine(
  "The larger of {0} and {1} is {2}.", x, y, greater.of(x, y));

If you add the greater.tt template file to a Visual Studio project, it will automatically
create the greater.cs file as a so-called subordinate file to be compiled within the same
project. Using T4 in Visual Studio is that simple. We explore a few implementation
details about the way in which T4 is integrated into Visual Studio later in the chapter.

<#@ template language="C#" #>
<#@ output extension=".cs" #>
<#@ assembly name="System.Core" #>
<#@ import namespace="System.Linq" #>
<#
  Type[] types_to_generate = new[]
  {

Listing 3.2 greater.tt as a T4 template for generating typed max functions
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    typeof(object),  typeof(bool),    typeof(byte),
    typeof(char),    typeof(decimal), typeof(double),
    typeof(float),   typeof(int),     typeof(long),
    typeof(sbyte),   typeof(short),   typeof(string),
    typeof(uint),    typeof(ulong),   typeof(ushort)
  };
#>
using System;
public static class greater
{
<#
  foreach (var type in types_to_generate)
  {
#>
  public static <#= type.Name #> of(
    <#= type.Name #> left, <#= type.Name #> right)
  {
<#
    Type icomparable =
      (from intf in type.GetInterfaces()where
        typeof(IComparable<>)
          .MakeGenericType(type)
          .IsAssignableFrom(intf)
        ||
        typeof(IComparable).IsAssignableFrom(intf)
      select intf).FirstOrDefault();
    if (icomparable != null)
    {
#>
    return left.CompareTo(right) < 0 ? right : left;
<#
    }
    else
    {
#>
    throw new ApplicationException(
      "Type <#= type.Name #> must implement one of the " +
      "IComparable or IComparable<<#= type.Name #>> interfaces.");
<#
    }
#>
  }
<#
  }
#>
}

Naming of T4 template files
Take note of the fact that T4 templates like the one shown in listing 3.2 typically bear
a file extension of TT (meaning Text Template). Why the extension T4 wasn’t chosen
for these files, who can say? Perhaps the T4 product moniker wasn’t ascribed to the
toolkit until after the TT file extension had already been established as a precedent.
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3.2.1 T4 syntax basics

Most T4 template files begin with one or more directives bracketed by the <#@ and #>
character sequences. If you think of T4 as a sort of compiler, these directives act like
the command line options that you might use to control the compiler’s behavior and
output. You’ll learn about several directives in this chapter, but the most common
ones are:

■ Template—Used to specify the language and compiler options
■ Output—Used to control output file extension and encoding
■ Assembly—Used to reference .NET assemblies during compilation
■ Import—Used like an import (VB) or using (C#) directive

After the directives, the remaining lines in the greater.tt file are part of so-called con-
trol blocks and text blocks. Before diving into how control blocks and text blocks
work, look at listing 3.3, which contains the abbreviated output of the greater.tt tem-
plate file. As a learning exercise, try to correlate what appears in the template source
code in listing 3.2 to the generated source code in listing 3.3. That exercise will give
you an appreciation for the nuances in T4’s syntax. The questions that pop into your
mind while doing that will be answered shortly.

using System;
public static class greater
{
  public static Object of(Object left, Object right)
  {
    throw new ApplicationException(
      "Type Object must implement one of the " +
      "IComparable or IComparable<Object> interfaces.");
  }
  public static Boolean of(Boolean left, Boolean right)
  {
    return left.CompareTo(right) < 0 ? right : left;
  }
  public static Byte of(Byte left, Byte right)
  {
    return left.CompareTo(right) < 0 ? right : left;
  }
  // The remainder of the generated "of" functions have been
  // omitted for brevity. Each of them is implemented exactly
  // like the versions for the Boolean and Byte types shown
  // above, simply invoking CompareTo to rank the operands.
}

As you can see, the greater class contains a function named of for each of the types spec-
ified in the types_to_generate variable specified near the top of the template. There
are 15 of those functions in the unabridged class because there are 15 types included in
the types_to_generate array defined in the first control block below the directives.

Listing 3.3 greater.cs as abbreviated output from the greater.tt template
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As you can see in listing 3.3, the first function in the output, which was emitted for the
System.Object type, throws an exception because the template control code deter-
mined that the System.Object type doesn’t implement either of the required
IComparable<Object> or IComparable interfaces. The remaining 14 types included in
the types_to_generate array implement one or both of the required comparison
interfaces, so they have code emitted that looks like this:

return left.CompareTo(right) < 0 ? right : left;

That code is appropriate for invoking the generic IComparable<T> implementation
of CompareTo or the loosely typed IComparable implementation. LINQ to Objects
code in the third standard control block shown in the template in listing 3.2 makes
this determination:

<#
    Type generic_icomparable =
      (from intf in type.GetInterfaces() 
        let args = intf.GetGenericArguments() 
        where intf.Name == "IComparable`1"
           && args != null
           && args[0].Equals(type)
        select intf).FirstOrDefault();
    if (generic_icomparable != null || type is IComparable)
    {
#>
    return left.CompareTo(right) < 0 ? right : left;

If the target class implements both of the interfaces, it doesn’t matter to us which one
is called, but the C# compiler’s rules will select the strongly typed implementation
because the emitted function’s left and right parameters will be strongly typed. For
now, all 14 of methods for the compliant types have the same exact implementation.
Later in this chapter, when you customize the template to add other acceptable con-
straints to the template, you’ll see some differentiation emerge in the of function
implementations for the 15 built-in .NET types.

Comparing dynamic code to static, metadata-generated code
Compare the inefficient dynamic_max function shown in listing 3.1 to any one of the
strongly typed of functions emitted into the greater class. The T4 approach gener-
ated a lot more code, that’s for certain. The generated code may be bulkier, but (a)
there’s nothing dynamic about the code, so it will be more efficient at runtime, and
(b) you didn’t have to write all those functions anyway. We used metadata and T4 to
write them for us, which makes T4 fit nicely into our metaprogramming bag of tools
for solving the kinds of problems that benefit from code generation.
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3.2.2 Understanding T4’s block types

Now it’s time to put the whole template into context to understand how the T4 engine
works. Let’s start with the control block that defines the types_to_generate variable.
It immediately follows the directives at the top of Listing 3.2 and looks like this:

<#
  Type[] types_to_generate = new[]
  {
    typeof(object),  typeof(bool),    typeof(byte),
    typeof(char),    typeof(decimal), typeof(double),
    typeof(float),   typeof(int),     typeof(long),
    typeof(sbyte),   typeof(short),   typeof(string),
    typeof(uint),    typeof(ulong),   typeof(ushort)
  };
#>

Note the <# and #> character sequences that demarcate the control block. All control
code in a T4 template must appear in a control block and be written in the program-
ming language specified in the language attribute of the template directive. In the
case of the greater.tt template, the C# language was specified as the template’s control
language, so all its subsequently defined control blocks must be written in C#.

To understand how a unique of function was emitted into the generated class for each
of the types defined in the types_to_generate array, locate the foreach statement
within the second control block in the template in listing 3.2. It looks like this:

<#
  foreach (var type in types_to_generate)
  {
#>

The foreach statement iterates over the types defined in the types_to_generate
array defined earlier. The key is that although T4 control blocks may be separated by
text blocks and other control blocks, they’re all part of the same control logic for the
template. Processing from top to bottom, objects defined in a T4 control block can be
referenced within subsequent control blocks, obeying the scoping rules of the
selected control language.

T4 Languages
At the time of this writing, C# and Visual Basic are the only other supported control
languages allowed in T4 templates using the standard host. Output text can be gen-
erated by T4 for any language—for example, T-SQL, F#, Java, XML, and so on. After
all, T4 isn’t a code generator. It’s a text generator, and as long as the target language
uses text for its source code, T4 can emit it.
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3.2.3 How T4 stitches together template blocks

Perhaps the best way to understand how T4 connects all the blocks together during
transformation is to visualize the first two control blocks at the top of listing 3.2 and
shown again for convenience in listing 3.4. The following listing shows all three of
those blocks together. Now compare it to listing 3.5 to see how T4 conceptually joins
those three blocks during transformation.

<#
  Type[] types_to_generate = new[]
  {
    typeof(object),  typeof(bool),    typeof(byte),
    typeof(char),    typeof(decimal), typeof(double),
    typeof(float),   typeof(int),     typeof(long),
    typeof(sbyte),   typeof(short),   typeof(string),
    typeof(uint),    typeof(ulong),   typeof(ushort)
  };
#>
using System;
public static class greater
{
<#
  foreach (var type in types_to_generate)
  {
#>

Type[] types_to_generate = new[]
{
  typeof(object),  typeof(bool),    typeof(byte),
  typeof(char),    typeof(decimal), typeof(double),
  typeof(float),   typeof(int),     typeof(long),
  typeof(sbyte),   typeof(short),   typeof(string),
  typeof(uint),    typeof(ulong),   typeof(ushort)
};
WriteLine("using System; ");
WriteLine("public static class greater");
WriteLine("{");
foreach (var type in types_to_generate)
{

Did you notice how the lines of text between the control blocks were inserted as Write-
Line statements in the conceptual, assembled control code? Comparing listings 3.4
and 3.5 should help you understand the inner workings of T4 host. T4 is a kind of text
compiler that interleaves the code in the control blocks with WriteLine statements for
each line in any text blocks encountered along the way. The result is a single class that
can be compiled and executed to transform the template into an output file.

 Understanding this assembly process will also help you to understand why the trailing
opening brace ({) found at the end of second control block in listing 3.2 is perfectly

Listing 3.4 Two control blocks in T4 surrounding a block of raw text

Listing 3.5 How T4 conceptually joins control and text blocks
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acceptable. As long as the matching closing brace (}) is placed appropriately into a
control block appearing later in the template, the resulting class that T4 generates
will be well formed. In fact, for the foreach iteration in the template in listing 3.2,
the matching closing brace appears as the last control block in the file, which looks
like this:

<#
  }
#>

It may be odd to think of this single C# closing brace as the sole content within a T4
control block, but that’s what it is. After T4 has assembled all the text and control
blocks defined in the template together, that closing brace for the foreach statement
won’t seem so alone and out of place.

3.2.4 T4’s expression control block

The last thing to explain about the greater.tt template is a syntax that appears multiple
times near the second text block defined in the file. This type of control block, called
an expression code block, uses the delimiters <#= and #> instead of the <# and #> delimit-
ers used to define a standard control block. Here’s how that section using expression
control blocks looks in the template from listing 3.2:

public static <#= type.Name #> of(
  <#= type.Name #> left, <#= type.Name #> right)
{

Using the expression control block syntax, the type variable’s Name property is emit-
ted three times in between four bits of raw text. These expression control blocks are a
convenient way to write the values of variables or the results of function calls into the
output file without having to use bulky Write statements inside standard control
blocks. The result is much cleaner looking and easier to read, leading to better overall
comprehension of the template by programmers to need to understand what the tem-
plate does.

 When T4 compiles the template, all seven text and control blocks are reduced to a
set of Write and WriteLine function calls within the internal class that T4 builds to
handle the transformation. Understanding that T4 creates a simple class containing
Write statements from the template’s text and control blocks will go a long way in
helping you understand the remaining material in this chapter.

 Now, let’s take a brain break and look at how T4 came into existence before we dig
deeper into the details of putting text templating to work inside Visual Studio.

3.2.5 A brief history of T4

Understanding the decision-making processes behind the development of T4 can
help you determine where it fits into your own projects. If you don’t care about the
history of T4 or if you want to focus on T4 implementation details right now, it’s all
right to skip to the next section and come back at a later time. For those interested in
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how T4 was developed, let’s do a quick tour of the people and projects that have con-
tributed to T4’s success and popularity.

 Several excellent third-party tools are available to do template-based code genera-
tion. Some provide integration with Microsoft Visual Studio. T4 has the advantage of
shipping with certain versions of Microsoft Visual Studio 2008 and Microsoft Visual
Studio 2010, so most of the software developers building commercial, Microsoft-based
solutions have access to it without needing to install any extra tools.

 T4 has become quite popular in recent years thanks to a number of factors, most
importantly the adoption of T4 by various tool-building teams within Microsoft’s devel-
oper division. Code generators for ASP.NET MVC, the ADO.NET Entity Framework, and
other popular frameworks are based on T4, making it one of the most widely used
tool-building frameworks around. 

 T4’s pedigree as a toolkit for tool building is no wonder since it first appeared as
part of Microsoft’s Domain Specific Languages (DSL) Toolkit in 2005. The DSL team
members are constantly experimenting with new programming languages and
related concepts. They’re tool builders by design. For that kind of work, you need a
flexible, easily integrated code generator at your fingertips. Around the time that
Gareth Jones of Microsoft’s DSL team realized the need for something like T4 in
2004, the DSL team members were still doing a lot of their code generation work
using old-fashioned printf statements in tools written in and around the C++ lan-
guage. There’s nothing wrong with C++, but the code-generation tools that the DSL
team was using at the time lacked the flexibility and ease of integration that most of
their projects demanded.

Gareth looked at the code-generation technologies that other Microsoft software
development teams had created and found that the ASP.NET page-processing engine
had several of the key qualities his team was looking for. From a syntax perspective,
the separation between the markup and control code was clear. Gareth’s experience
helped him understand that having a clear syntactical division between raw text and
code could dramatically improve programmer comprehension in a general-purpose
code-generation tool. More importantly perhaps, the architecture of the ASP.NET
engine, performing its page transformation and HTML emission through assembly
and execution, seemed to fit nicely with the needs of several of the DSL projects
Gareth was involved in.

An interview with Gareth Jones
To complete this chapter, Gareth Jones, the creator of T4, submitted to an interview
with the authors of this book. The history of T4 outlined here comes with no citations.
But Gareth’s blog at http://blogs.msdn.com/b/garethj has many great articles and
references to other sources that will corroborate what you learn from us about T4. As
one of the most fascinating people working at Microsoft, we hope you’ll follow
Gareth’s work closely and learn more about pattern-based software design.

http://blogs.msdn.com/b/garethj
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 After reaching the conclusion that the ASP.NET page-processing engine was a good
candidate for becoming a general-purpose code generation tool, Gareth used the
ASP.NET engine as the basis for T4, combining it with other DSL team components in
the lab. Although T4 has undergone a complete rewrite since Gareth used the
ASP.NET engine as the basis for his toolkit in 2004, the similarities between the tradi-
tional ASP.NET page syntax and T4’s syntax remain. Any developer who’s worked in
ASP or ASP.NET will recognize the patterns in T4 and take to them quickly. For that
matter, any developer who has worked in PHP, JSP, and any number of other web page
generators will also feel right at home in T4.

 From the beginning, T4 has been available as both a standalone tool and as an add-
in for Visual Studio. As you know, the first publicly available version of T4 appeared in
2005 as part of the DSL Toolkit. But because downloading the DSL Toolkit isn’t some-
thing that average developers do, relatively few developers knew about that first ver-
sion of T4. When Visual Studio 2008 shipped, the Professional and Ultimate versions
of the product had T4 built right in. More developers began using the toolkit at that
time, but adoption remained relatively low for a variety of reasons.

 With the release of Visual Studio 2010, T4 finally stepped into the limelight. Better
adaptation into the Integrated Development Environment (IDE), more thorough
product documentation, and the emergence of several champions in the developer
community helped T4 to earn the interest of thousands of programmers who had
never before heard of the toolkit. Most importantly, several Microsoft Developer Divi-
sion teams began using T4 to generate code from metadata for their frameworks
around that same time.

3.3 More useful T4 examples
Imagine that you want to dynamically generate classes in C# to move data around.
Given a list of property names and types, you could write code that generates the data
class for you, as shown in the following listing.

using System;
using System.Collections.Generic;

class Chapter3Intro
{
  public static void GenerateDataClass(string className,
    List<Tuple<Type, string, bool>> properties,
    bool generateCtor = true)
  {
    Console.WriteLine("public class {0}", className);
    Console.WriteLine("{");
    foreach (var property in properties)
    {
      Console.WriteLine(
        "  public {0} {1} {{ get; {2}set; }}",
        property.Item1,

Listing 3.6 Chapter3Intro.cs dynamically generating a data class



78 CHAPTER 3 The Text Template Transformation Toolkit (T4)
        property.Item2,
        property.Item3 ?  "" : "private ");
    }
    if (generateCtor)
    {
      Console.Write("  public {0}(", className);
      for (int ndx = 0; ndx < properties.Count; ndx++)
        Console.Write("{0}{1} {2}",
          (ndx > 0) ? ", " : "",
          properties[ndx].Item1,
          properties[ndx].Item2,
          properties[ndx].Item3);
      Console.WriteLine(")");
      Console.WriteLine("  {");
      foreach (var property in properties)
      {
        Console.WriteLine(
          “    this.{0} = {0};",
          property.Item2);
      }
      Console.WriteLine("  }");
    }
    Console.WriteLine("}");
  }
}

Notice that the function generator takes the name of the class to create, a flag indicat-
ing whether or not a constructor should be generated, and a list of properties
including their names, types, and access modifiers. The code writes chunks of C# text
to the console and uses control statements also written in C# to process the parame-
ters and iterate over the property list.

 To use the C#-based code generator shown in listing 3.1, let’s assume you need to
create a class called DynamicCar. The car should have properties for varying types for
ordinary features like Make, Model, Year, and MPG (miles per gallon). Let’s make one of
the properties read-only for fun. Lastly, the DynamicCar needs a constructor, so that
should be generated, too. The following listing shows how you might invoke the
GenerateDataClass function shown previously to create the DynamicCar class.

using System;
using System.Collections.Generic;

class Demo
{
  static void Main()
  {
    string className = "DynamicCar";
    bool generateCtor = true;
    var properties = new List<Tuple<Type, string, bool>>()
      {
        Tuple.Create(typeof(string), "Make", true),

Listing 3.7 Chapter3IntroMain.cs generating a class dynamically
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        Tuple.Create(typeof(string), "Model", true),
        Tuple.Create(typeof(int), "Year", true),
        Tuple.Create(typeof(int), "MPG", false)
      };

    Chapter3Intro.GenerateDataClass(className, 
 properties, generateCtor);

    Console.ReadLine();
  }
}

Before the GenerateDataClass method is invoked, metadata for the class name, the
flag to create the constructor, and a list of property descriptions for the DynamicCar
are described. For simplicity, the output of this small program goes to the console win-
dow. When the program is run, the source code for the DynamicCar class shown in the
following listing appears on the console window.

public class DynamicCar
{
  public System.String Make { get; set; }
  public System.String Model { get; set; }
  public System.Int32 Year { get; set; }
  public System.Int32 MPG { get; private set; }
  public DynamicCar (System.String Make,
    System.String Model, System.Int32 Year,
    System.Int32 MPG)
  {
    this.Make = Make;
    this.Model = Model;
    this.Year = Year;
    this.MPG = MPG;
  }
}

Comparing the metadata to the class that was produced, everything seems to be in
order. The DynamicCar class has the correct name. All the properties that were
described are included, and each has the correct type. The MPG property, which was
marked as read-only, correctly has a private mutator (setter), too. Lastly, notice that
the constructor is correctly implemented, setting the value of each of the properties
from the constructor’s parameters.

 Although the C#-based code generator works correctly, the approach demon-
strates the pain that Microsoft’s DSL team was dealing with in 2004. In many cases,
they were using functions like WriteLine (rather than printf in C++) to generate
code in this way. You can clearly see how cumbersome the model is, even when you
abstract the code generator into a function like GenerateDataClass. There’s no clear
separation between the boilerplate text that needs to be emitted and the control code
that runs over and around it. This lack of separation reduces comprehension, slows down
development, and leads to otherwise avoidable errors. Templates that are marginally

Listing 3.8 The dynamically generated DynamicCar class
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more complex than the one shown in this example become difficult to implement
and maintain using this kind of code-generation approach. Moreover, the real bene-
fits of metaprogramming have been lost.

 Now look at how T4 can be used to solve this same problem (we get into how to do
this in Visual Studio in a bit). Examine the template shown in the next listing. This T4
template will create the same DynamicCar class shown in listing 3.3.

<#@ template language="C#" #>
<#@ import namespace="System.Collections.Generic" #>
<#@ output extension=".cs" #>
<#
  string className = "DynamicCar";
  bool generateCtor = true;
  var properties = new List<Tuple<Type, string, bool>>()
    {
      Tuple.Create(typeof(string), "Make", true),
      Tuple.Create(typeof(string), "Model", true),
      Tuple.Create(typeof(int), "Year", true),
      Tuple.Create(typeof(int), "MPG", false)
    };
#>
public class <#= className #>
{
<#
  foreach (var property in properties)
  {
#>
  public <#= property.Item1 #> <#= 
    property.Item2 #> { get; <#= 
    property.Item3 ? "" : "private " #>set; }
<#
  }

  if (generateCtor)
  {
#>
  public <#= className #>(<#
    for (int ndx = 0; ndx < properties.Count; ndx++)
      Write(“{0}{1} {2}",
        (ndx > 0) ? ", " : "",
        properties[ndx].Item1,
        properties[ndx].Item2,
        properties[ndx].Item3);
#>)
  {
<#
    foreach (var property in properties)
    {
#>
    this.<#= property.Item2 #> = <#= property.Item2 #>;
<#

Listing 3.9 GenerateDataClass.tt: a T4 template to generate data classes
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    }
  }
#>
  }
}

This template is straightforward to follow, but if you’ve never worked with T4, some
syntactical concepts are worth explaining to make them clearer. First of all, the three
lines at the beginning of the template delimited by <#@ and #> are called directives.
These are somewhat like command-line parameters to a compiler. In this case, the
three directives tell the compiler the following:

1 This is a template, and the language you’ll be using for your control code will
be written in C#.

2 You want to import a namespace (like C#’s using directive) that will allow you
to use the generic collection types like List<T>.

3 The code generator should output a file with a .cs extension.

After those directives comes a block containing the parameters defining the metadata
of the class to be dynamically generated. These parameters are exactly like those
shown in listing 3.2 used before invoking the C#-based code generator function. In
the next chunk of the template, you see how T4 lets you sprinkle text between code and
sprinkle code into text:

public class <#= className #>
{

Notice that there are no <# and #> delimiters on the outside of this section of the tem-
plate. You can place raw text between control blocks without delimiters, making your
boilerplate text much easier to read. Whenever T4 encounters text not delimited by
special tags, it emits that text exactly as it’s written to the output, whitespace and all.

 In the tiny snippet from the template shown earlier are three separate T4 blocks.
Embedded between two text blocks, notice there’s an expression that emits the vari-
able called className. Expression control blocks use the slightly modified delimiters
<#= and #>, as you can see. The provided expression can be a variable, a literal, or a
function call and must evaluate to a string. Expressions in T4 are most handy for
inserting computed values or parameters into raw text as shown, without disrupting
the flow of the text.

 So far, you’ve seen that T4 lets you execute pure control code, emit raw text, and
embed expressions within raw text. Next, let’s look at some more interesting flow-
control concepts.

 T4 processes the template from top to bottom. In this top-down examination of the
example template so far, all T4 would have emitted is the class declaration and the curly
brace that follows it. The automatic properties will be generated next. If you look back
at how property generation was done in the C#-based code generator in listing 3.1,
you’ll see a foreach loop that iterates over the metadata and outputs text using a
Console.WriteLine statement. Here’s how it was done in C#:
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foreach (var property in properties)
    {
      Console.WriteLine(
        "  public {0} {1} {{ get; {2}set; }}",
        property.Item1,
        property.Item2,
        property.Item3 ? "" : "private ");
    }

You could use the same code in T4 by pasting it directly into a control block. But to
demonstrate alternatives to that approach available in T4, we’ll use a technique that
mixes control code, boilerplate text, and expressions instead. It’s not necessarily a bet-
ter approach to do it that way, but it highlights some of the more interesting features
of T4’s syntax. Compare the following lines from the T4 template to its pure C# equiva-
lent shown earlier:

<#
    foreach (var property in properties)
  {
#>
  public <#= property.Item1 #> <#= 
    property.Item2 #> { get; <#= 
    property.Item3 ? "" : "private " #>set; }
<#
  }
#>

The line that emits the code for the property begins with the public keyword. It
would be even easier to understand if we could show it all on one line. When the
foreach loop runs to iterate over the properties, this is the section of the template
that will emit these four lines into the output file:

public System.String Make { get; set; }
public System.String Model { get; set; }
public System.Int32 Year { get; set; }
public System.Int32 MPG { get; private set; }

Did you notice in the template how two separate T4 control blocks have been used
to wrap a mixed set of text blocks and expressions to produce this output? In fact,
the closing curly brace of the foreach loop appears in a completely separate con-
trol block. That might seem odd, but in T4, it’s perfectly acceptable. The first text
block in between those control blocks emits the C# keyword public, then an
expression is used that refers to the range variable defined in the foreach loop.
The technique of mixing expressions and raw text continues to complete the decla-
ration for each property.

 When you begin working in T4, this kind of construction can be quite confusing.
Your normal sense of scope in languages like C# or Visual Basic doesn’t apply well.
The key thing to remember is that the <# and #> delimiters used for control blocks
in T4 do create scope for the template’s control code. Syntactically, though, that
scope isn’t limited to a single pair of delimiters. You’re free to split up the scope in
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your control language however you like, mixing in text, more control blocks, and
expressions as you see fit.

 The last section of the template shown in listing 3.9 generates the constructor for
the class. The techniques you’ve seen so far are used again to iterate over the property
list two more times. The first iteration produces the parameter list in the constructor’s
declaration; the other iteration produces the assignments of those parameters to their
associated properties inside the constructor’s body. The first of those loops introduces
T4’s Write utility function, which is a lot like Console.WriteLine used in the C#-based
code generator. But T4’s Write function emits text into the output file instead of send-
ing it to the console device.

 If you add the template file from listing 3.9 to a Visual Studio project, you’ll
observe that whenever you modify and save it, a C# source code file is generated con-
taining the DynamicCar class. The output file will have the same name as the template
and whatever extension is assigned in the <#@output#> directive.

 There’s a lot more to learn about T4’s integration with Visual Studio. We’ll get to
that soon. For now, all we want you to understand is that T4 provides a clean syntax for
separating control code from boilerplate text, some helpful utility functions, and
effective, easy-to-use integration with Visual Studio.

3.3.1 Templates should be beautiful

The concept of mixing markup and code isn’t new at all. In the web world, a small
idea conceived in 1994 and initially known as the Personal Home Page (PHP) tools
grew into a technological juggernaut that propelled names like Facebook, Joomla,
Drupal, and Digg to fame and fortune. Active Server Pages (ASP), which Microsoft
released in 1998, used the same technique of mixing markup and code to render its
web pages. JavaServer Pages (JSP), released in 1999, and ASP.NET in 2002 followed the
same basic pattern. It’s no surprise that anyone who’s coded in PHP, ASP, JSP, or
ASP.NET will feel right at home in T4.

 In recent years, many Microsoft developers have become critical of the ASP.NET
syntax from which T4 was derived. Some complain that it’s too chunky or too decorative
for efficient web page layout, in particular when building large, complex pages. The
separation between the markup and the control code is too heavy for the tastes of
many modern web developers. Markup generators like HTML Abstraction Markup
Language (HAML) and MVC view engines like Razor and Spark have appeared in
recent years to appeal to an emerging sensibility that markup should be both func-
tional and beautiful.

 Where does this leave T4—which uses an older, arguably heavier syntax for separat-
ing control code and boilerplate text? Is T4 both functional and beautiful for what it’s
intended to do? Should T4 abandon the ASP-style syntax and adopt something more
streamlined like Razor? The answer from Microsoft on that last question is no. What
has proven to be desirable for web developers isn’t always ideal in other cases. When
you need to mix boilerplate code in C# or Visual Basic with metadata-driven control
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and expression code written in the same languages, having a bit more decoration in
the templating syntax can be a good thing. If T4 had a Razor-like syntax, the separa-
tion between the template text and control code in the template would become nearly
indistinguishable. That would reduce comprehension significantly. Even with good
syntactic separation, there are places in listing 3.9, for example, where it’s admittedly
difficult to tell which curly braces belong to a text block or a control block. Try that in
Razor syntax, and you would be scratching your head trying to figure it out.

 Microsoft’s other key reason for defending the syntax of T4 is that it isn’t a code
generator, as we’ve been telling you all along. T4 is a text generator. It can emit any kind
of text-based output. View engines like Razor get some of their syntactical efficiency
from the fact that the output type is well-known. Because Razor strictly emits web
pages, its engine can make optimizing assumptions and provide domain-specific sup-
port for the parser that increases both comprehension and expressiveness. The Razor
syntax takes full advantage of those engine optimizations to yield a language that
makes web page design a truly joyful experience.

 T4’s engine, on the other hand, doesn’t know or care what kind of output it gener-
ates. It’s completely unaware of the output file type or any syntactical conventions of
whatever you’re trying to produce. Short of a handful of utility functions for handling
indentation and emitting text, T4 syntax doesn’t get much assistance from the engine
upon which optimizations could be built. Does this mean that another syntax parser
couldn’t be adapted to T4? No. But without a good reason to support an alternative syn-
tax, T4 is likely to continue using its arguably chunky, decorative syntax for the foresee-
able future. It’s a subjective assessment, but for a general-purpose text generator, T4’s
syntax may strike as good a balance between function and form as we can expect.

3.4 T4 fundamentals
Now that you’ve seen a simple example of T4 in action, let’s dig a little deeper into
some of the basics. To generate text, the T4 syntax offers three types of elements:
directives, text blocks, and control blocks. The first element types we examine are the
T4 directive and text block.

3.4.1 Directives and text blocks

Directives control the templating engine during the generation process, allowing you to
specify parameters, the output file extension, the encoding of the generated file, refer-
enced assemblies and imports, and the language you want to use in your control blocks.
Directives are surrounded with the special delimiters <#@ and #>, as you saw in the
example in the last section. It’s helpful to think of T4 as a kind of compiler. If T4 were a
compiler, most of the built-in directives would be the command-line switches that con-
trol the compilation and output processes. Here is a pair of directives that instruct T4 to
load the System.Xml.dll assembly and output a file with a .sql extension:

<#@ assembly name="System.Xml" #>
<#@ output extension=".sql" #>
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Now think about how the C# compiler that you might invoke from the command line
handles assembly references and output file naming. For Microsoft’s CSC.EXE com-
piler, you could use the /reference and /out command-line switches to control those
options. For T4, the <#@assembly#> and <@#output#> directives allow you to do the
same thing within the text of the template file. 

 The second type of T4 element to understand is the text block. Text blocks are lines
of raw text that will be inserted into the transformed output. Unlike directives and
control blocks, these blocks of raw text don’t have any special delimiters surrounding
them. In fact, what defines a text block in a T4 template is the absence of any T4 delim-
iters. The T4 engine doesn’t evaluate the contents of a text block at all, so it could be
anything: source code, MIME-encoded binary data, code comments, and so forth. T4
inserts the text block into the output whenever the transformation occurs.

3.4.2 Control blocks

Control blocks come in several varieties. To get started, let’s examine a standard con-
trol block, sometimes called a statement block. 

STANDARD CONTROL BLOCK

Here’s a small T4 template that writes the string “Hello, world!” to the output file:

<#@ template language="C#" #>
<#@ output extension=".txt" #>
Hello, <# WriteLine("world!"); #>

This simple template demonstrates all three types of blocks that you’ll need to
become familiar with to eventually master T4. The <#@ and #> delimiters on the first
two lines indicate that they’re directives. For this little template, the directives tell T4
that any control code in the template should be interpreted as C# and that the output
file should have a .txt extension. The third line introduces both a text block, con-
taining the word Hello, and a standard control block that calls the T4 host’s built-in
WriteLine utility function.

 When you save the previously shown template file in Visual Studio, a few things will
happen. First, a tool is invoked to compile the template into a .NET class and instanti-
ate it. Then a method in the generated class called TransformText is invoked to pro-
duce the output, which is written to a file. Lastly, Visual Studio inserts or updates the
generated file into the project as a so-called subordinate file that’s associated with the tem-
plate. You don’t get to see the compilation and invocation steps when using the stan-
dard Visual Studio T4 host, but you can definitely see the newly created output file.

Text blocks are like XML CDATA
If you’re familiar with XML, you can think of T4 text blocks as the unparsed charac-
ter data in an XML CDATA section. T4 text blocks allow you to insert raw, uninter-
preted text directly into the output of the template, whitespace, and nonprintable
characters included.
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Assuming that the small template file shown earlier was named
HelloWorld.tt, the resulting output file would be named Hello-
World.txt because of the outputextension directive specified
within the template. Those two files will appear in Visual Studio’s
Solution Explorer view, as shown in Figure 3.1.

 We get into the details of how that generation process works in
a bit. For now, understand that adding a text template file to a
Visual Studio project produces a single subordinate file whenever
the template is modified and saved.

MULTISTATEMENT STANDARD CONTROL BLOCKS

Calling T4’s built-in utility functions like WriteLine in a standard control block is
straightforward. Standard control blocks can have more than one statement in them,
which is why you’ll sometimes hear them called statement blocks. To generate the
“Hello, world!” output with multiple statements, you might write the template in a
slightly different way:

<#@ template language="C#" #>
<#@ output extension=".txt" #>
Hello,
<#
  Write("world");
  WriteLine("!");
#>

The two C# statements in the control block are easy enough to understand. The Write
method doesn’t emit a new line sequence into the output, but the WriteLine method
does. However, when saved, this template doesn’t produce “Hello, world!” on one line
as you might expect. Instead, the text is on two lines like this:

Hello,
world!

What went wrong? Where’s the extra new line coming from? A careful examination of
the template shows that it’s coming not from the control block but from the text block
that precedes it. Within a text block, every character is interpreted literally, including
invisible ones like carriage returns, line feeds, tabs, and spaces. To make this template
produce the desired text on one line, you need to modify it slightly, like this:

T4’s WriteLine != Console.WriteLine
The first time you see code in T4 that invokes the WriteLine function as shown previ-
ously, it’s tempting to think that it’s in some way related to the WriteLine method in
the System.Console class. Although similarly named, T4’s WriteLine method has an
entirely different implementation. If you invoke Console.WriteLine by mistake in a T4
template, you won’t get an error. You also won’t get the expected output from the tem-
plate because the generated text will be going to an invisible console window instead of
your output file. This can be positively maddening until you figure out your mistake.

Figure 3.1 The 
HelloWorld template 
and its output as 
shown in Visual 
Studio’s Solution 
Explorer window. 
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<#@ template language="C#" #>
<#@ output extension=".txt" #>
Hello, <#
   Write("world");
   WriteLine("!");
#>

Did you notice that the new line at the end of the text block has now been replaced by
the opening <# tag of the control block? It’s a subtle change, but it makes a distinct
difference in the output. This template will produce “Hello, world!” in the output file
on one line.

It’s also important to note that control characters and whitespace inside a T4 control
block are only significant if the source language treats them that way. Everything
inside a control block is treated purely as source code to be compiled into the tem-
plate’s class. If you were compiling a template using Visual Basic 9 or earlier as the
control language, you’d need to use underscores as line-continuation characters
whenever you split lines of code in your control blocks. Similarly, if you include a C#
literal string beginning with the @ symbol in a T4 control block, the compiler will inter-
pret every character inside the literal string exactly as it’s expressed, including any
invisible tabs or new line sequences expressed inside the literal string.

EXPRESSION CONTROL BLOCKS

Using the Write and WriteLine utility methods provided by T4 can be cumbersome
when readability and comprehension are important. T4 offers expression control
blocks to make your templates more fluent. To specify an inline expression, open a
control block using a slightly different opening delimiter: <#= instead of <#. Inside the
expression block, you’re allowed to reference any field or property in the template
class. You can also invoke a method in the expression block as long as it returns a
value that can be converted to a string. The following template will output the string
in the planNumber field:

<#@ template language="C#" #>
<#@ output extension=".txt" #>

Line spacing in T4
When you first begin working in T4, line spacing can be a bit tricky if you’re working
in complex, multifile templates. Quite often, when examining the output of a tem-
plate, you’ll ask yourself, “Where are those extra lines coming from?” For source
code generation, an extra line (or the absence of one) doesn’t make a difference,
depending on the language you’re emitting. But if you’re a Type A personality, these
minor details might bother you. Moreover, poor line spacing can affect programmer
comprehension when reading the code. After a bit of practice, you’ll get a feel for how
T4 line spacing works and establish some simple rules for making sure your gener-
ated code is consistently well formed.
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<#
  int planNumber = 9;
#>
Plan <#= planNumber #> from Outer Space

The placement of the expression control block <#=planNumber#> between the two
text blocks in this small example is certainly more readable than calling the Write util-
ity method. The planNumber variable isn’t a string, but T4 will invoke the ToString
method to convert it for you. Passing an integer or any other type that has a properly
overloaded ToString method is no problem in a T4 expression block.

3.4.3 Handling indentation
Before talking about the last kind of control block in T4 basics, let’s examine how
indentation is handled. Software developers are typically picky about what nonpro-
grammers would think of as trivial—even meaningless details concerning our code.
Formatting of source code is one of those topics that gets programmers into so-called
religious arguments. We care so much about the nuances of formatting because we
understand that readability directly affects human comprehension. Careful delimiter
placement, line continuation, and indentation practices can make the difference
between grasping a bit of complex source code and being completely lost in it. Fur-
thermore, some languages like Python and F# are fundamentally dependent on
indentation to reflect program structure.

 The base class from which the standard T4 host derives includes a variety of utility
functions. You’ve already used the Write and WriteLine utility functions in this chap-
ter to format text being generated into the output file. Three other utility functions
are available for managing indentation:

■ voidPushIndent(stringindent);

■ stringPopIndent();

■ voidClearIndent();

There’s also a read-only string property called CurrentIndent in the class containing
the text that will be prefixed to each line generated by T4. When the transformation
begins, CurrentIndent is an empty string, so each line that’s emitted will have no
characters prefixed to it.

 Internally, the T4 generator class manages the indentation strings passed to Push-
Indent on a stack-like structure. Calling PushIndent adds a string to the top of the

Expression blocks may contain branching logic
When you write an expression control block in T4, it can be a reference to any single
object that can be converted to a string. You might infer that a C# expression like <#=
A ? B : C #> would work, too. After all, that expression will produce a reference to
object B or object C, depending on the truth of the value A. The C# ternary operator
used in an expression control block is a simple, compact way to create highly com-
prehensible T4 templates.



89T4 fundamentals
stack. The CurrentIndent property accessor coalesces all the values on the stack into
one long string. Calling PopIndent removes the indentation string last pushed so that
CurrentIndent no longer includes it. The next listing demonstrates the basic con-
cepts of how indentation works in T4.

<#@ template language="C#" #>
<#@ output extension=".txt" #>
<#
  PushIndent("L1 ");
#>
Item A
<#
  PushIndent("L2 ");
#>
SubItem A1
SubItem A2
SubItem A3
<#
  PopIndent();
#>
Item B
<#
  PushIndent("L2 ");
  for (int ndx = 1; ndx <= 3; ndx++)
    WriteLine("SubItem B" + ndx);
  ClearIndent();
#>
Done.

The output of the BasicIndentation.tt template looks like this:

L1 Item A
L1 L2 SubItem A1
L1 L2 SubItem A2
L1 L2 SubItem A3
L1 Item B
L1 L2 SubItem B1
L1 L2 SubItem B2
L1 L2 SubItem B3
Done.

We can make a few observations about the template code and its output. First, the cur-
rent indentation applies to text that comes from both text blocks and control blocks.
What we said about text blocks being interpreted literally before wasn’t perfectly true.
Each line that’s emitted will be prefixed with the string value from CurrentIndent,
whether it’s hardcoded like the SubItems in the text block for ItemA or those dynami-
cally generated using a for loop in a control block like the SubItems for ItemB.

 Another thing to note from the example is that you don’t have to indent strictly
with whitespace. When you’re generating source code for popular languages like C#
or Visual Basic, whitespace for indentation is the norm. But as you can see in listing 3.10,

Listing 3.10 BasicIndentation.tt
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any string can serve as indentation, even those like L1, L2, or anything else that makes
sense for your output file type.

 The last observation to make about listing 3.10 concerns the use of the Clear-
Indent utility function. If you need to clear the stack of all the indentation strings that
have been pushed so far, you could keep calling PopIndent until the CurrentIndent
property returns an empty string. But that kind of code would be ugly and cumber-
some to write when calling the ClearIndent utility function is available.

CLASS FEATURE BLOCKS

As you learned earlier, T4 dynamically creates a new class that contains all the text and
code defined in the template in executable form. It also contains class-level utility
functions like Write and PushIndent that you can invoke anywhere inside the tem-
plate’s control code. If the template is a .NET class, why shouldn’t you be able to add
your own methods to it that can be invoked like the methods provided by the T4 base
class? Class feature blocks let you do that. Appreciating that T4 uses metaprogram-
ming internally will help you to understand how class feature blocks work.

 Many times, when you’re writing a T4 template, you want to organize your control
code so that it can be invoked repeatedly. Even if your code isn’t intended to be called
repeatedly, you may find it useful to separate it into discrete methods and properties
to make it more readable. The following listing shows a method named Expanded-
TypeName implemented as a T4 class feature block. Given a .NET Type, this method for-
mats a string containing the readable name of the type. That will be helpful in the
next example when you want to output information about generic methods.

<#+
  private string ExpandedTypeName(Type t)
  {
    var result = new StringBuilder();
    if (!t.IsGenericType)
      result.Append(t.Name);
    else
    {
      result.Append(t.Name.Substring(0,
        t.Name.IndexOf('`')));
      result.Append("<");
      int ndx = 0;
      foreach (var tp in t.GetGenericArguments())
        result.AppendFormat(
          (ndx++ > 0) ? ", {0}" : "{0}", tp.Name);
      result.Append(">");
    }
    return result.ToString();
  }
#>

Did you notice the <#+ and #> sequences surrounding the function? Those are the
special delimiters that surround a class feature block in T4. Think of the plus symbol

Listing 3.11 ExpandedTypeName functioning as a class feature block
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as meaning add this stuff to the class. The ExpandedTypeName function defined here
takes a Type object as the parameter and returns a string that looks like the C# defini-
tion for the type. If the supplied type isn’t generic, the simple Name property is
returned. But if the type is generic, its type arguments are formatted to resemble the
C# declaration rather than the CLR notation that the Name property normally returns.
The following listing shows the ExpandedTypeName method in action, being used to
produce an interesting result.

<#@ template language="C#" #>
<#@ output extension=".txt" #>
<#@ import namespace="System.Text" #>
<#= ExpandedTypeName(this.GetType())#> Information:
<#
  PushIndent("  ");
  WriteLine("Properties:");
  PushIndent("  ");

  foreach (var pi in this.GetType().GetProperties())
  {
    Write("{0} {1} {{",
      ExpandedTypeName(pi.PropertyType), 
      pi.Name);
    WriteLine("{0}{1} }}",
      pi.CanRead ? " get;" : "",
      pi.CanWrite ? " set;" : "");
  }

  PopIndent();
  WriteLine("Methods:");
  PushIndent("  ");

  foreach (var mi in this.GetType().GetMethods())
  {
    Write("{0} {1}(",
      ExpandedTypeName(mi.ReturnType), 
      mi.Name);
    var parms = mi.GetParameters();
    if (parms != null)
    {
      for (int ndx = 0; ndx < parms.Length; ndx++)
      {
        Write((ndx > 0) ? ", {0} {1}" : "{0} {1}",
          ExpandedTypeName(parms[ndx].ParameterType),
          parms[ndx].Name);
      }
    }
    WriteLine(“);”);
  }
#>
<#+
  private string ExpandedTypeName(Type t)
  {

Listing 3.12 TemplateClassDiscovery.tt
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    var result = new StringBuilder();
    if (!t.IsGenericType)
      result.Append(t.Name);
    else
    {
      result.Append(t.Name.Substring(0,
        t.Name.IndexOf('`')));
      result.Append("<");
      int ndx = 0;
      foreach (var tp in t.GetGenericArguments())
        result.AppendFormat(
          (ndx++ > 0) ? ", {0}" : "{0}", tp.Name);
      result.Append(">");
    }
    return result.ToString();
  }
#>

Reading from top to bottom, after an initial set of template directives, the Expanded-
TypeName function is invoked in an expression control block passing this.GetType()
as the parameter. Then the template iterates over the properties and methods to
reflect some basic information about it. The question is, what does the this parame-
ter (or Me in Visual Basic) refer to inside a T4 template? Running the template should
make it clearer. The following listing shows the output from the template.

GeneratedTextTransformation Information:
  Properties:
    CompilerErrorCollection Errors { get; }
    String CurrentIndent { get; }
    IDictionary<String, Object> Session { get; set; }
  Methods:
    String TransformText();
    CompilerErrorCollection get_Errors();
    String get_CurrentIndent();
    IDictionary<String, Object> get_Session();
    Void set_Session(IDictionary<String, Object> value);
    Void Initialize();
    Void Dispose();
    Void Write(String textToAppend);
    Void WriteLine(String textToAppend);
    Void Write(String format, Object[] args);
    Void WriteLine(String format, Object[] args);
    Void Error(String message);
    Void Warning(String message);
    Void PushIndent(String indent);
    String PopIndent();
    Void ClearIndent();
    String ToString();
    Boolean Equals(Object obj);
    Int32 GetHashCode();
    Type GetType();

Listing 3.13 The output of TemplateClassDiscovery.tt
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You can see from the output that the type of the this reference must be of a Type
called GeneratedTextTransform. It has three properties and twenty methods as
shown. You should recognize some of the other property and method names by now,
too. For example:

■ TransformText

■ Write and WriteLine
■ CurrentIndent, PushIndent, PopIndent, and ClearIndent

It’s obvious now that inside a template, the this reference refers to the compiled class
that’s generated by T4. With a little reflection and a helper function defined in a class
feature block, you discovered more about how T4 works internally. How cool is that?

3.5 Using T4 inside Visual Studio
T4 integrates into Visual Studio without a lot of ceremony. If you add .tt files to
nearly any project type, the output files are automatically generated back into the
project. What could be simpler than that? This section examines how T4 and Visual
Studio work together. In the process, you’ll go beyond the basics you learned in the
last section to understand how to use metaprogramming with T4 to solve some dif-
ficult problems.

3.5.1 How T4 uses the single file generator extension point

T4’s relationship to Visual Studio isn’t special from the Integrated Development Envi-
ronment’s (IDE’s) perspective. The so-called single file generator extension point in the
MSBUILD system is used to handle a variety of common code generation tasks, includ-
ing T4 transformations. To support this feature generally, the project file format used by
Visual Studio includes a source file property called CustomTool, shown in figure 3.2.
Notice that the template file is marked not to build and not to be copied to the output
directory. A custom tool called TextTemplatingFileGenerator will be run to process
the file. That custom tool is the T4 host designed for Visual Studio.

 Pay close attention to the value of the CustomTool property. The value was auto-
matically set to TextTemplatingFileGenerator when the .tt file was added to
the project. 

Where’s the method you added?
You may be wondering why the ExpandedTypeName function that was added in the
class feature block didn’t appear among the 20 methods shown in the output in list-
ing 3.13. The reason is simple. The function was declared as private, and the
Reflection API methods introspect for public members by default. Change the access
modifier on the ExpandedTypeName function in the template to public, save it, and
observe the output file again. This time, you’ll see that 21 methods are reported,
including ExpandedTypeName.
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For other Visual Studio file types, a variety of CustomTool property values exist. Here’s
a short list of common code generators that you’ll find if you scan the registry on a
machine that has Visual Studio installed:

■ DataServiceClientGenerator—Creates OData access clients
■ EntityModelCodeGenerator—Creates classes from EF models
■ MSLinqToSQLGenerator—Creates classes from LinqToSql models
■ ResXFileCodeGenerator—Creates classes from .resx files
■ WCFProxyGenerator—Creates web service proxy classes

If you’ve been doing .NET work for a while, you may have seen some of those val-
ues specified in the CustomTool property and wondered how they got there. Unfor-
tunately, the answer isn’t to be found in a nice, clean Visual Studio configuration
dialog. It’s buried in the registry near the generator names shown in the previous
bullets. Files with an extension of .edmx are bound to the EntityModelCode-
Generator, for example. And T4 template files with the extension.tt are bound to
the TextTemplatingFileGenerator as shown in figure 3.2. These registered associa-
tions tell Visual Studio how to set the CustomTool property value whenever a file
is added.

 After the tool association has been set, other registry values help Visual Studio
locate the assemblies that perform the code generation. For T4 transformations, the
single file generator is in a class named TemplatedCodeGenerator. Each of the previ-
ously listed code generators follows this same pattern. They each have one or more
file associations registered for them to ensure that the correct CustomTool property is
set in the project file. And they each have an assembly registered that does the code
generation step to produce subordinate files for each source file.

 The point of understanding Visual Studio’s single file code generator extension
point is that T4 is integrated into Visual Studio using the same standard, single-file
generator extensibility point that many other tools use. Other than that, Visual Studio
doesn’t know what goes on inside a T4 template. As of this writing, Visual Studio offers

Figure 3.2 The Solution Explorer and Properties windows in Visual Studio 2010 showing the file 
properties for a T4 template
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no customized IDE support or IntelliSense support for T4 templates. But a few excel-
lent third-party tools do so.

3.5.2 Creating a T4 template from Visual Studio

Now that you know a bit about how T4 is connected to Visual Studio for design-time
code generation, let’s have some fun with it. Add a T4 design-time template to any pro-
ject by right-clicking the project name in the Solution Explorer and selecting the Add
New Item menu choice. The dialog shown in figure 3.3 will appear. Notice how the
word template has been used in the search textbox to find the T4 item types. To add a
design-time template, select the one called Text Template, name it, and click Add.

 On the left side of the Add New Item dialog, note the Installed Templates list.
These aren’t T4 templates, although one can imagine that in some future release of
Visual Studio, T4 could be used by the Add New Item function to create project files
dynamically. There’s certainly nothing stopping third parties from extending Visual
Studio in that way.

 Among the Visual Studio file templates are two T4-specific ones you can use to add
text templates to your projects. Rather than hunting for them among all the Installed
Templates categories in the list shown in figure 3.2, you can use Visual Studio 2010’s
template search function to find them instead. Type the word template into the
search box on the Add New Item dialog and press Enter. Figure 3.3 shows the results
of the query—two T4 choices that are available in Visual Studio 2010 today:

■ Preprocessed Text Template—A run-time T4 template
■ Text Template—A design-time T4 template

Figure 3.3 Adding a design-time template to a project in Visual Studio 2010
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You can think of a Preprocessed Text Template as one that doesn’t require Visual Stu-
dio to run. In fact, in the Visual Studio documentation, these are also called Run-Time
Text Templates. We cover Preprocessed (run-time) Templates in detail in the next sec-
tion. The other choice is the so-called Text Template, also called a Design-Time Text
Template in the Visual Studio documentation. To create a template that’s compiled and
transformed during the build process for your solution, the Text Template is the right
choice. In any open project, add a Text Template named DesignTimeFun.tt and click
the Add button in the Add New Item dialog. When Visual Studio initially creates the
new .tt file from its own template, it will contain only these two directives:

<#@ template debug="false"
    hostspecific="false" language="C#" #>
<#@ output extension=".txt" #>

Remember that all T4 directives are bounded by the <#@ and #> character sequences
as shown earlier. If you’re working in a Visual Basic project, the language attribute on
the template directive will initially be set to "VB" instead of "C#" as shown. It’s impor-
tant to understand that the choice of language in the template directive determines
the control language for the template, not the file type of the template’s output.

3.5.3 More on the template directive

All T4 templates must include a <#@template#> directive. For versions of T4 shipping
with Visual Studio 2010 and later, the language attribute isn’t required and will
default to "C#" if not specified. Older implementations of T4 may require the lan-
guage attribute on the template element, so check the documentation for the version
you’re using to be sure. Behind the scenes, the CodeDOM is used to compile T4 tem-
plates, so, depending on the installed CodeDOM providers on your computer, you
may be able to select a specific version of your control language’s compiler for T4 to
use by setting the language attribute to a specific value—for example, "C#2.0."
Check the documentation that comes with your version of Visual Studio to know
exactly which languages are supported. In general, specifying "C#" or "VB" for the
language attribute are safe choices because that will select the default compilers for
those languages that are installed on your computer.

 The debug and hostspecific attributes on the T4 template directive included by
the Visual Studio file template are also not required. But because you’re likely to want
to make changes to these attributes from time to time, the Visual Studio file template

T4 control language versus output
T4 is more generally a text generator than a code generator. You can use Visual Basic
to produce C# or F#, Python or XML, for that matter. T4 transformations are also exe-
cuted outside the context of normal, Visual Studio-controlled compilation, so if you’re
working in a C# project and want to use Visual Basic as the control language inside
your templates, that’s perfectly okay.
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that produces the initial .tt file includes them in the template element using their
default values. You can leave the debug and hostspecific attributes in the template
directive as they appear or remove them if you like.

 This text isn’t meant to be an exhaustive reference for all of the T4 directive
options, but there are a couple of other attributes on the template directive worth
mentioning. The first one is the compilerOptions attribute. We mentioned before
that T4 uses the CodeDOM internally to create a class from the template, compile,
and invoke it. During the compilation process, you can pass options to the compiler,
as you would at the command line if you were invoking the compiler by hand. When
the T4 control language is C#, any of the command line options for the CSC.EXE
compiler can be passed using the compilerOptions attribute on the template direc-
tive like this:

<#@ template language="C#" compilerOptions="warnaserror+" #>

This example will elevate any warnings generated during the compilation to errors,
causing it to fail. The Visual Basic compiler also supports the warnaserror+ option, so
the same compilerOptions value could be used when Visual Basic serves as the T4
control language.

 The other template directive attribute worth mentioning is culture. When this
attribute is specified, the thread that performs the transformation will be set to the
designated culture beforehand. The string value that’s provided must adhere to
the standard of a two-character ISO 639 (culture) code followed by a hyphen and a
two-character ISO 3166 (subculture) code. For example, to ensure that globalization
settings for Brazilian Portuguese are used when generating a T4 template’s output, the
following template directive could be used:

<#@ template language="C#" culture="pt-BR" #>

If the culture is included in the template in this way, the standard T4 host used by
Visual Studio sets the culture of the processing thread to the specified value before
the transformation occurs. If the culture value isn’t present, the transformation occurs
using whatever the Windows default is for the machine.

3.5.4 Using the output directive

The output files from design-time templates are always named with the same root file-
name as their associated template files. To set a different file extension, you must use
an <#@output#> directive. Interestingly, if you fail to specify an output directive in a
design-time template, the extension of the file that’s emitted will always be .cs
whether or not the including project type is C#.

 Because a design-time template can generate any kind of text output at compile
time, you must use an output directive to specify the extension of the file that’s cre-
ated. Programmers new to T4 sometimes assume that the extension that’s specified
affects the output in other ways. But that’s not true. T4 doesn’t do any special process-
ing based on the designated outputextension. You could choose to emit a file with a
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traditional T-SQL file extension from a template by specifying the output directive,
like this:

<#@outputextension=".sql"#>

But appending the .sql extension to the output filename doesn’t invoke any special,
T-SQL transformation logic during the process. T4 has no language-specific code for
any kind of text that it might produce. What’s emitted is purely a function of the con-
trol blocks and text blocks that are included in each template.

 The output directive also allows you to set the encoding of the output file with
using the optional encoding attribute. To create a Python file encoded as UTF-16, for
example, the following output directive could be used in a T4 template:

<#@outputextension=".py"encoding="utf-16"#>

The default encoding is UTF-8, which is a Unicode encoding that’s backward-compati-
ble with ASCII. The only real problem with UTF-8 is that it’s multibyte, meaning that
some characters sequences are longer than others. This means that files using the
UTF-8 encoding can’t be randomly accessed like those encoded using fixed-width
character formats, such as UTF-16 and UTF-32. If you’re not working with huge input
files, or if you plan to process the output files sequentially, UTF-8 is typically an excel-
lent choice for file encoding because it’s also independent of Byte Order Marking
(BOM). In addition to the encodings mentioned so far, T4 also supports ASCII, UTF-
16BE (Big-Endian), and UTF-7.

3.5.5 Using T4 to generate Visual Basic dynamically

Using what you know so far, let’s have some fun. Let’s create a console application
using Visual Basic and include a T4 template that uses C# as the control language that
produces a Visual Basic file to be compiled as the main module.

1 Create a Visual Basic console application and modify the Module1.vb file to
write a string to the console, like this:

ModuleModule1
  SubMain() 
    Console.WriteLine("Hello,world!")
  EndSub
EndModule

2 Compile and run the application to make sure it functions as you expect, out-
putting the phrase “Hello, world!” to the console window.

3 Replace the Module1.vb file with a template that produces it instead. Right-
click the console project in the Solution Explorer and select Add New Item or
select Add New Item from Visual Studio’s Project menu. The Add New Item dia-
log shown earlier in figure 3.3 appears.

4 Search for the T4 templates by typing template in the search box in the upper
right-hand corner and pressing Enter.
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5 From the search results, select the Visual Studio file template called Text Template.
6 Name the new file DynamicModule1.tt and click the Add button to add the file

to the project. Notice that a new T4 text template named DynamicModule1.tt
has been added to the project.

7 Open the .tt file and enter the template code as shown in the next listing.
Notice two things: the template control language is C# even though the project
is of type Visual Basic and the file extension declared in the output directive is
also for Visual Basic.

<#@ template language="C#" #>
<#@ output extension=".vb" #>
<#
  string msg = "Hello, world!";
  int n = 0;
#>
Module Module1
  Sub Main()
    Console.WriteLine("<# while (n < msg.Length)
      Write(msg[n++].ToString());
    #>")
  End Sub
End Module

8 Save the DynamicModule1.tt file and look for any compilation errors in the
Visual Studio output window. If you made a mistake that caused a compilation
error, double-click the error in the output window—note that your cursor is
taken to the offending spot in the template.

9 For Visual Basic projects, unlike C# projects, the output files for T4 text tem-
plates aren’t shown in the Solution Explorer window by default. You have to
click the Show All Files button at the top of the Solution Explorer window to be
able to see the DynamicModule1.vb file that was produced by the template.
Once you’ve done that, open the output file and look at it. Do you recognize it?
Yes, it’s exactly the same as the Visual Basic code shown in step 1 of this task.

10 Before you compile the whole project again though, there’s one small problem
that must be corrected. As it now stands, your project has two identical modules
named Module1. The Visual Basic compiler isn’t going to like that at all. Right-
click the Moldule1.vb file in the Solution Explorer and choose Delete from the
context menu.

11 Compile and run the project again. You should see that the output is identical
to the output shown in step 2 of this task.

You’ve created a T4 text template using C# as the control language to dynamically gen-
erate a Visual Basic module into a Visual Basic project. You can use C# or Visual Basic
as the template control language to emit any kind of file into any kind of project.

Listing 3.14 DynamicModule1.tt
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NOTE Unfortunately, the version of T4 that ships with Visual Studio 2010
doesn’t allow you to emit files based on the current project type, at least not
without a bit of extra work. Perhaps a future version of T4 will make that
much simpler.

The key learning point here is that T4 gives no special treatment to the output based
on file type. Only the control blocks and text blocks in each template will determine
what’s in the resulting output files.

3.6 Summary
Microsoft’s T4 is a highly addictive product. Then again, once your team starts benefit-
ting from a code generator from any vendor, you’ll find all sorts of opportunities to
use it to speed up the work and reduce coding errors. To us, template-based code gen-
eration qualifies as metaprogramming because it requires all the same mental skills
that the other forms of metaprogramming require and delivers many of the same bene-
fits. To be a good template designer, you must learn to think in that same abstract,
prototypical way about how code should behave in context and often later in time.

 As compared to the many other template-based code generators on the market,
the real advantage of T4 is its tight integration with Visual Studio. As you’ve discovered
in this chapter, generating code with T4 is as simple as dropping a TT file into your
Visual Studio solution and inserting the raw text and control blocks to emit the
desired output. T4 and Visual Studio take care of all the rest at compile time.



Generating code
with the CodeDOM
Web browsers have a Document Object Model (DOM) for creating windows and
managing the navigation between pages. HTML has a DOM for describing the con-
tent and structure of those pages. JavaScript has a DOM for automating the others.
These models are appropriately called DOMs because they’re technologies for the
World Wide Web, which is a largely document-oriented system.

 Given the range of roles that a DOM can fill, what do you think Microsoft’s
CodeDOM does? It could be used to describe code. As you learned in chapters 1
and 2, .NET provides a rich metadata foundation for applications. Or perhaps it’s
used to define code as data in a sort of document outline fashion. An API so
promisingly named might also be used to generate code. After all, JavaScript can
generate HTML on the fly. Why shouldn’t the CodeDOM be able to generate .NET
code dynamically?

This chapter covers
■ Understanding the CodeDOM
■ The code providers classes
■ Adding objects to a code graph
■ Metaprogramming with the CodeDOM
101
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 As you might have guessed by our hypothesizing about the nature of the API, the
CodeDOM and the underlying code providers that you’ll learn about in this chapter
enable all these scenarios in .NET:

■ Describing code in a mostly language-independent data structure
■ Generating source code in a variety of languages
■ Compiling code and code-as-data into .NET assemblies

The CodeDOM is a metaprogramming power tool that every serious developer on the
.NET platform should take the time to understand. In this chapter, you’ll start by
learning about code graphs, a construct that the CodeDOM uses to express the logic and
structure of code in terms of data. Then you’ll take a tour of the various CodeDOM
providers and the more important classes in the System.CodeDom and System.CodeDom
.Compiler namespaces. After that, you’ll study an example that will help you to grasp
the range and flexibility of the CodeDOM’s power.

4.1 Understanding the CodeDOM
The CodeDOM is a fairly complex collection of classes that can be found in the System
.CodeDom and System.CodeDom.Compiler namespaces. Most of the types in these
namespaces can be found in the mscorlib.dll and System.dll assemblies in the Global
Assembly Cache (GAC). It’s clear from that arrangement how essential the CodeDOM
is in the .NET Framework Class Library (FCL).

 One of the reasons that the CodeDOM is so prominently placed is that it’s been in the
.NET Framework since the beginning. The CodeDOM shipped with the original .NET 1.0
release in February 2002. It evolved quite a bit in the next two releases of the framework,
mostly to support enhancements to the delegate model and the addition of generics.

 Since 2005, though, the CodeDOM hasn’t seen much growth, partly because the Code-
DOM is already rich enough to support many kinds of metaprogramming scenarios with-
out further modification. The other key reason is the emergence of expression trees.

Code graph ≈ expression tree
The CodeDOM uses so-called code graphs to express code as data. A code graph is
a hierarchical data structure that represents the logic and structure of an algorithm.
It can be parsed from source code text or built one step at a time, like writing lines
of code in your favorite language.

Code graphs can be turned into executable IL when it’s time to use them. Expression
trees, introduced in the 3.0 version of .NET, can represent code as data, too. They
can also be built programmatically or parsed from source code and turned into IL for
execution. Code graphs and expression trees seem alike at first glance. Under the
covers, however, the implementations of these two metaprogramming systems
couldn’t be more dissimilar. As you study the CodeDOM in this chapter and expres-
sion trees in chapter 6, you’ll learn to appreciate the differences and take advantage
of them.
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To enable Language Integrated Query (LINQ) in the CLR and the core .NET lan-
guages, something fundamentally different from the CodeDOM was needed. The Cod-
eDOM has many of the metaprogramming capabilities that LINQ can use to build
expressions dynamically, but it’s packaged in a way that makes it difficult to use in a set
of language extensions. For LINQ expressions, Microsoft decided to go a different way.

 At this point, you may be asking yourself whether it’s worthwhile to invest in learn-
ing the CodeDOM. Don’t worry. The CodeDOM isn’t going away, because it can still do
some interesting things that expression trees can’t, such as generate whole new types.
Because of this, some popular tools have emerged from Microsoft since expression
trees were introduced that use the CodeDOM for much of their metaprogramming
work. For example, the T4 uses the CodeDOM under the covers to generate classes
from templates and to compile them into assemblies. The ASP.NET MVC Framework
and the Microsoft Entity Framework are two popular systems that use T4.

 The CodeDOM is here to stay, and in some cases it’s the preferred metaprogram-
ming model where code generation and compilation are required. Investing time and
energy to understand the CodeDOM is definitely worthwhile. The best way to start is
by examining the CodeDOM namespaces, focusing on some of the key classes and how
they’re organized.

4.1.1 CodeDOM organization and types

The System.CodeDOM namespace is arranged into a hierarchical collection of classes.
At the root is a class called the CodeObject that only provides a dictionary called User-
Data. Every derived object in the namespace has a dictionary that can be used to store
bits of information. It’s interesting to note that the dictionary type for the UserData
property is a ListDictionary from the System.Collections.Specialized namespace,
which is efficient for lists that will contain ten or fewer items. If you put a lot of data
into the UserData list of a CodeObject, performance will suffer. The diagram shown in
figure 4.1 depicts the CodeObject base class and several of its key derivatives.

 From the CodeObject, several interesting classes are derived that represent the
basic object model of a .NET program. The CodeNamespace type represents…well,
namespaces in .NET. The CodeNamespaceImport is used to import one namespace into
another so that references to types that aren’t fully qualified in the resulting code can
be found. The CodeStatement types represent statements in a .NET language. The
CodeExpression types correspond to the bits of logic that make up statements. We dis-
cuss the distinction between statements and expressions in the next section.

Figure 4.1 The CodeDOM CodeObject 
base class and a partial list of 
derived types
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Most of the other type names shown in figure 4.1 are self-explanatory. They describe
the remaining major components of a program: comments, directives, types (inter-
faces, classes, and structs), members (methods, fields, and properties), parameters,
and references to other objects. The purpose of the CodeCompileUnit isn’t so clear.
For the most part, you can think of the CodeCompileUnit type as the CodeDOM con-
cept for a .NET assembly. You can use a CodeCompileUnit to compile an assembly into
memory for immediate use or to disk for loading the traditional way.

 Let’s go a bit deeper into the hierarchy and begin looking at some of the Code-
Expression types depicted in figure 4.2.

 It might make sense to look at how to construct statements or classes next because
they’re the way we think about coding in our favorite programming languages. But it’s
better to talk first about expressions because they represent the bricks in a CodeDOM
building—the smallest units of program logic.

 The CodeExpression class serves as the root for all the expression types in the
CodeDOM. Figure 4.2 shows some of the more common expressions that you’re likely
to use in your code graphs. Program elements like arguments, binary operators (add,
multiply, equality, and so on), cast operations, and method invocations can be used to
construct an algorithm as data one expression at a time. The expression types with
Reference in their names act as references to other CodeDOM types.

 These reference expressions shouldn’t be confused with the CodeTypeReference
type shown in figure 4.1. The CodeTypeReference derived from CodeObject only
serves as a placeholder for .NET types at runtime. For example, in a CodeCatchClause,
which you’ll learn about later, the type of exception that’s caught is specified as a
CodeTypeReference. The .NET CLR allows any type of object to be thrown during an
exception, so the type used in the CodeCatchClause isn’t specified as a System.Exception
(as C# and Visual Basic programmers might expect). Instead, that parameter is typed
as a CodeTypeReference so it’s able to support languages that can handle throwing
and catching types that aren’t derived from System.Exception.

Figure 4.2 The CodeExpression 
base class and a partial list of 
derived types
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Now you’re ready to look at the next level of abstraction: statements. Figure 4.3 shows
some of the more common statements defined in the CodeDOM and their relation-
ship to the CodeStatement base class.

4.1.2 How statements and expressions fit together

Statements use expressions. When you instantiate a CodeDOM statement object, you
must specify the expressions that will be used to describe the constituent pieces. Con-
sider the following statement written in C#:

R = fn(A + B) / C;

One way to visualize this is as a set of nested or chained function calls:

Assign(R, Divide(Invoke(fn, Add(A, B)), C))

This kind of functional breakdown is exactly how you must code it as a code graph
using the CodeDOM.

 At the outside is the assignment which you’d code using the CodeAssignStatement
shown in figure 4.3. But you can’t start there logically. Instead, you’d need to go to the
center of the statement, which is the addition operation. For that, you must use an
expression known as the CodeBinaryOperationExpression. To it you’d pass Code-
VariableReferenceExpression objects for the variables A and B along with the opera-
tor type for doing addition. Moving outward, the next expression is the invocation of
the fn function with the result of the addition expression. For that part, you use
CodeMethodInvokeExpression, passing a method reference and the addition opera-
tion. Next comes another binary operation for dividing the function result by the vari-
able C. Finally, after all of that work, you can build your CodeAssignStatement with a
reference to the R variable and the result of the division expression.

 Do you see how expressions can be chained and nested to produce statements?
Learning to think this way, which is undeniably inside-out, isn’t easy for everyone. The
process is related to the concepts in functional programming which some developers
find difficult, in particular those who’ve coded only in imperative, object-oriented lan-
guages for many years. On the bright side, because the CodeDOM gives you such rich
classes for describing code as data, learning to build algorithms by hand can make it

Figure 4.3 The CodeStatement 
base class and a partial list of 
derived types
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easier for you to transition into functional thought. Forcing yourself to break down
statements and expressions in your mind’s eye, the way that a language and a compiler
would do it for you, creates new prototypes upon which functional programming con-
structs fit cleanly.

 Now that you’ve learned a bit about the classes that make up the CodeDOM and
the logical assembly of an algorithm, let’s turn our attention to the code providers.
They interpret code graphs, translating them into source code in a variety of lan-
guages. They also provide compiler services, which we look at later in the chapter.

4.2 The code provider classes
Most developers write code on the .NET platform using C# and Visual Basic. It’s not
surprising, then, that the only two CodeDOM code providers that are defined inside
the System.dll assembly are for these popular languages. The code providers for C++,
Jscript, and Visual J# are also in the Global Assembly Cache (GAC), but they’re imple-
mented in separate assemblies. Several third-party code providers are available on
CodePlex.com and other source code repositories, but only the ones for the five lan-
guages just mentioned are supported by Microsoft.1

4.2.1 Code provider instantiation

When the CodeDOM classes are initially loaded, the constructor for the CodeDom-
CompilationConfiguration class loads up the configuration data for all five code pro-
viders (mentioned in the preceding section) by name. During this process, the
configuration handler class also loads the data associated with any other user-config-
ured code providers from the application’s configuration files or from the machine
.config file. This configuration section is located along the path shown in the follow-
ing listing.

<configuration>
  <system.codedom>
    <compilers>
      <compiler
        language="languageName[;...;...]"
        extension="fileExtension[;...;...]"

The Boo CodeDOM provider
If you want to understand how a CodeDOM provider is implemented on the inside,
check out how it’s done for the Boo language.1 Dissecting a CodeDOM provider is a
great way to learn the CodeDOM from the inside-out.

1 “Boo.Lang.CodeDom.booproj,” posted 2010, http://mng.bz/Gqq9.

Listing 4.1 Configuring the CodeDOM via XML

http://mng.bz/Gqq9
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        type="typeName, assemblyName"
        warningLevel="number"
        compilerOptions="option1 option2 [...]">
    </compilers>
  </system.codedom>
</configuration>

You can configure code providers by specifying <compiler/> rows in the configura-
tion file with the type, extension, and language attributes properly specified. The
other attributes are optional. For example, the <compiler/> element for a mythical
language named K# might appear in a configuration file as

<compiler
  language="k#;ks;ksharp"
  extension=".ks;ks"
  type="KSharp.KSharpCodeProvider, KSharpCodeProvider">

This would allow the language provider class defined in the KSharp.KSharpCodePro-
vider.dll assembly to be instantiated using any of the language strings associated with
it, like this:

var ksharpProv = CodeDomProvider.CreateProvider("k#");

Internally, when the CodeDOM loads the configuration data for a language, it’s stored
in a CompilerInfo class instance in an internal dictionary maintained by the Code-
DOM. You can query that dictionary to find out which languages are supported by call-
ing the static method GetAllCompilerInfo on the CodeDomProvider class to retrieve
all those CompilerInfo objects. Here’s an example:

foreach (System.CodeDom.Compiler.CompilerInfo ci in
  System.CodeDom.Compiler.CodeDomProvider.GetAllCompilerInfo())
{
  foreach (string language in ci.GetLanguages())
    System.Console.Write("{0}     ", language);
  System.Console.WriteLine();
}

This code will yield a list that looks something like this:

c#     cs       csharp
vb     vbs      visualbasic    vbscript
js     jscript  javascript
vj#    vjs      vjsharp
c++    mc       cpp

You can see the five preconfigured code providers in this list reporting their various
language synonyms to the console. If you have more language providers configured,
you’ll see more lines in the output.

 There are a couple of ways to instantiate a CodeDOM code provider. You can use
the static CreateProvider method on the CodeDomProvider class, as shown previously,
as a kind of class factory to find a preconfigured provider by one of its synonyms. You
can also instantiate a code provider directly if you have a reference to the assembly
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and the desired CodeDomProvider-derived type. The following two lines of code, dem-
onstrating those two approaches, are roughly equivalent:

var csProv1 = System.CodeDom.Compiler
  .CodeDomProvider.CreateProvider("c#");

var csProv2 = new Microsoft.CSharp
  .CSharpCodeProvider();

The key difference between these two methods is that the first one, which uses the
CreateProvider factory, picks up all the provider settings that were configured dur-
ing construction of the CodeDOM. Using the second method, instantiating the code
provider directly, doesn’t use any externally configured values.

 Both methods for creating a CodeDOM code provider allow for various options to
be specified. For example, the C# and Visual Basic providers support an optional
parameter named CompilerVersion, which, as you may guess, you can use to select
the version of the compiler to use. Internally, this works by searching for installed
compilers on the local system. In the next listing, a small program is shown that will
compile another program from source code in a string. The program selects the
"v4.0" version of the compiler by passing a dictionary containing that option keyed as
the "CompilerVersion" to the provider’s constructor.

using Microsoft.CSharp;
using System.CodeDom.Compiler;
using System.Collections.Generic;

class IntantiatingCodeProviders
{
  static void Main()
  {
    var providerOptions = new Dictionary<string, string>();
    providerOptions.Add("CompilerVersion", "v4.0");
    var csProv = new CSharpCodeProvider(providerOptions);
    var compilerParameters =
      new CompilerParameters(new string[] { });

    CompilerResults results =
      csProv.CompileAssemblyFromSource(compilerParameters,
@"namespace V3Features
{

Configured code providers
Just because a CodeDOM code provider is configured doesn’t mean it’s available.
Some code providers, like Visual J#, are hardcoded to be configured during CodeDOM
construction. But if you don’t have the Visual J# redistributable package installed,
locating that code provider at runtime will fail. Wrap calls to the CreateProvider fac-
tory in the CodeDomProvider class in a try block; be prepared to catch an exception
if you attempt to instantiate a missing code provider.

Listing 4.2 InstantiatingCodeProviders.cs
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  class Program {
    static void Main() {
      var name = ""Kevin"";
      System.Console.WriteLine(name);
    }
  }
}");
  }
}

If you execute the program created from the InstantiatingCodeProviders.cs file on a
system that has the C# 4.0 compiler installed, it will run to completion without errors,
compiling the small program with the V3Features namespace passed as a string to the
CompileAssemblyFromSource method. But if you change the CompilerVersion value
in the providerOptions dictionary to "v2.0" instead, you may get an exception that
reads like the one shown in the following listing.

“Compiler executable file csc.exe cannot be found.”

Stack Trace:
  at System.CodeDom.Compiler.RedistVersionInfo
    .GetCompilerPath(...)
  <... some stack frames omitted ...>
  at System.CodeDom.Compiler.CodeDomProvider
    .CompileAssemblyFromSource(...)
  at IntantiatingCodeProviders
    .Main() in C:\...\InstantiatingCodeProviders.cs:line 17

You’ll get such an exception if the version of the C# compiler you requested isn’t
installed on the computer running the program. Notice, though, that you won’t get
this exception when you instantiate the provider. Instead, you’ll see that the exception
comes later when the CodeDOM needs the compiler to do some real work—for exam-
ple, when you invoke a method like CompileAssemblyFromSource.

 You can see in the exception message in listing 4.3 that the CodeDOM is searching
for the compiler executable named csc.exe. That’s the executable filename for the
standalone C# compiler. The stack trace further shows that the CodeDOM is trying to
get the path to a specific redistributable version of the compiler, in this case the
"v2.0" version. Because all C# compilers have been named csc.exe since .NET 1.0,
the folder containing the 2.0 version needs to be located.

 If you have the 2.0 version of the C# compiler installed on your machine, and the
CodeDOM can find it, you won’t get a CodeDOM exception when you run the pro-
gram. Instead, you’ll get an exception from the C# 2.0 compiler itself. Can you guess
what the error will be? (Hint: the program passed as a string to be compiled included
a namespace called V3Features.)

Listing 4.3 Possible exception output from InstantiatingCodeProviders.cs
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4.2.2 Code generator supportable options

Each language generator can support a variety of features. Some languages support
try/catch blocks, and some don’t. As of this writing, the CodeDOM allows language
generators to register 26 supportable features. Source code case sensitivity can also be
registered, but in a different way, as you can see in the next listing. The example
shown in this listing enumerates each of the installed CodeDOM code providers and
records which language and generator features are supported.

using System;
using System.Text;
using System.CodeDom.Compiler;

class ShowCompilerFeatures
{
  static void Main()
  {
    foreach (CompilerInfo ci in
      CodeDomProvider.GetAllCompilerInfo())
    {
      StringBuilder output = new StringBuilder();
      string language = ci.GetLanguages()[0];
      output.AppendFormat("{0} features:\r\n", language);
      CodeDomProvider provider = CodeDomProvider
        .CreateProvider(language);
      output.AppendFormat("CaseInsensitive = {0}\r\n",
        provider.LanguageOptions.HasFlag(
          LanguageOptions.CaseInsensitive));
      foreach (GeneratorSupport supportableFeature
        in Enum.GetValues(typeof(GeneratorSupport)))
      {
        output.AppendFormat("{0} = {1}\r\n",
          supportableFeature,
          provider.Supports(supportableFeature));
      }
      Console.WriteLine(output.ToString());
    }
  }
}

More on the CompilerVersion option
Interestingly, the code provider for the version of Visual Basic that ships in the .NET
Framework 4.0 isn’t "v10.0" as you might expect given that the language product is
at version 10 in that release. For now, the code provider version for both C# and VB
matches the version of the Framework, so you’ll have to specify "v4.0" instead. Bet-
ter yet, if you want the latest version of either compiler, you can omit the Compiler-
Version option altogether. The Visual J#, C++, and JScript code providers don’t
support the CompilerVersion option as of this writing.

Listing 4.4 ShowCompilerFeatures.cs
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Running the program in listing 4.4 shows that the C# and Visual Basic languages
report True for all 26 supportable code generator features. We’ve achieved good lan-
guage parity between C# and VB in recent years, so that makes sense. The provider’s
LanguageOption property for the enumerated type value LanguageOption.Case-
Insensitive reports False for C# and True for Visual Basic. This report is correct
because VB is case insensitive, and C# isn’t.

 Here are some of the more interesting findings about supported language features
in the output from the program in listing 4.4:

■ JScript doesn’t support 17 of the language characteristics that C# and VB have,
including generics, nested types, and various features concerning metadata.

■ C++ reports that it doesn’t support several features:
– ArraysOfArrays

– ChainedConstructorArguments

– Resources

– PartialTypes

– GenericTypeDeclarations

When you’re building a CodeDOM code graph to generate code, avoid adding objects
to the code graph for language features that aren’t supported in the target language.
Using C# and Visual Basic for output is typically a good bet because they support all
the language features.

 The requirement to match structural abstractions about code to a provider that
may or may not support them is one of the unfortunate realities that you must deal
with when trying to develop a language-independent way of describing code as data.
Using the CodeDOM approach, it can’t be done cleanly in every case. Expression
trees, which we look at in depth in chapter 6, don’t suffer from this problem as much
because they were developed from the more pure abstraction of lambda expressions,
which were developed in the realm of mathematics, not computer science.

The history of lambda expressions
As a software developer, you might be forgiven for thinking that lambda expressions
were conceived as a computer science construct. But they come from mathematics
and predate modern computer science by a couple of decades. Although lambdas (for
short) have more mathematical origins, computers as we know them wouldn’t have
come into existence without certain portions of what’s known as the lambda calculus.
Lambdas were initially created as a notation for proving certain parts of the lambda
calculus and eventually made their way into functional programming languages like
Scheme, Haskell, and F# for creating functions. Nowadays, we can enjoy the expres-
siveness that lambdas provide for writing LINQ queries in object-oriented languages
like C# and Visual Basic. The .NET implementation of expression trees was also heav-
ily influenced by lambdas, making rich interlanguage support through the Dynamic
Language Runtime (DLR) possible, too.
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4.2.3 Code provider services

Each CodeDOM code provider is derived from a base class called CodeDomProvider.
You’ve seen static invocations on that class to get configured provider information or
to instantiate providers for specific languages. But you haven’t seen the other inter-
esting services available. Some of the other useful static methods in the CodeDom-
Provider class are:

■ GetCompilerInfo

■ GetLanguageFromExtension

■ IsDefinedExtension

■ IsDefinedLanguage

These are all helper methods for searching in the dictionary of configured code pro-
viders and finding information about them.

 Here are some of the more interesting instance methods you can call once you
have a CodeDomProvider-derived class in hand:

■ CompileAssemblyFromDom

■ CompileAssemblyFromFile

■ CompileAssemblyFromSource

■ CreateCompiler

■ GenerateCodeFromCompileUnit

■ GenerateCodeFromNamespace

■ GenerateCodeFromType

■ Parse

As you can see, these methods all involve compilation, code generation, or parsing.
Each could be collected into one of three groups that represent the three forms that
your application code can be in. In the first form, source code exists, written in popu-
lar programming languages like C# or C++. That source code could be compiled into
the second form, known as a .NET assembly. It could also be parsed into the third
form, called a code graph. You may also build code graphs by hand using statement
and expression objects. Forms two and three can be generated back into form one
anytime you want.

CodeDomProvider implementations
Not all code providers implement all the compilation, generation, and parsing meth-
ods shown previously. Some code providers will implement code generation from one
source but not from another. As of this writing, none of Microsoft’s code providers
implements the Parse method, which is intended to convert source code directly into
a code graph. Future versions of Microsoft languages and tools may support some-
thing even better than parsing code into a CodeDOM code graph. Turn to chapter 10
to find out more.
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As you can see, the CodeDOM provides a versatile framework, not merely for source
code generation, but for the manipulation of programs into and out of all of the
forms they might take during their lifetimes. We’ll look at parsing into code graphs
and generating assemblies from them later. For now, let’s examine how to build up a
code graph programmatically. Constructing a program by hand will help you under-
stand how the CodeDOM and the various code providers work internally.

4.3 Adding objects to a code graph
Once you’ve instantiated a CodeDOM code provider, you can begin to build so-called
code graphs. In CodeDOM-speak, a code graph is a hierarchical data structure that can
describe a program. This concept of code-as-data is common in metaprogramming.
You’ll see it over and over again throughout this book, because when code can be
articulated in terms of data, it can reduce the mismatch between human expression
and machine interpretation.

 Source code in a high-level language like C# is pretty far removed from the
machine. That kind of abstraction is good for most kinds of application development.
But when you’re metaprogramming, having abstractions that represent the logic of an
application in a way that’s purer, unencumbered by language ceremony and syntax, is
much more useful.

 Let’s begin our voyage into CodeDOM code graphs by exploring some of the key
data types that are used for describing code as data.

4.3.1 Creating a namespace with imports

Namespaces in .NET are a somewhat artificial construct. They’re useful for dealing
with potential clashes between types by giving you a way to add uniqueness to
names. They’re also useful for organizing large collections of types into smaller
groups with meaningful, often hierarchical names. Namespaces are convenient but
not strictly necessary. Most C# code you see nowadays starts with a set of using dec-

What’s a Jubjub?
Throughout this section, we’ll be examining various CodeDOM features by building a
class called Jubjub. Author Kevin Hazzard chose this name and some of the others
in the examples from the 19th century poems “Jabberwocky” and “The Hunting of the
Snark” by Lewis Carroll. Teaching instruments named Jubjub, Mimsy, Vorpal, and
Wabe are guaranteed not to conflict with other concepts that we’re trying to convey
as we move along. Their oddness also makes them striking and memorable. When
you’re learning to metaprogram, the names and classifications for things can start to
stumble all over each other in your mind. This is the essence of metaprogramming
and one of the things that makes it challenging. Writing code that creates code is a
recursive experience, somewhat like standing between two mirrors. Choosing odd
names for your subjects can help you sort out what’s real and what’s merely a reflec-
tion. Through the looking glass we go, one Jubjub at a time.
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larations to import namespaces for the entire file, followed by a namespace declara-
tion that contains one or more type definitions. Maybe you’ve seen code that’s
organized this way instead:

namespace Whatever {
  using System;

  class Program {
    static void Main() {
      Console.WriteLine("Hi!");
    }
  }
}

Notice how the using declaration is inside the namespace declaration? This kind of
import style was seen more commonly when .NET was new and produces some subtle
differences in the compilation process. Over time and for whatever reasons, many
developers have chosen to place their import declarations outside of their namespace
declarations. Using the CodeDOM, when you build a code graph, you’ll often create a
CodeNamespace first and then insert some CodeNamespaceImport objects into it,
reflecting the kind of code organization shown previously:

CodeNamespace mimsyNamespace = new CodeNamespace("Mimsy");
mimsyNamespace.Imports.AddRange(new[]
{
  new CodeNamespaceImport("System"),
  new CodeNamespaceImport("System.Text"),
  new CodeNamespaceImport("System.Collections")
});

The preceding code creates a namespace in the resulting code called Mimsy, with
three imports for the System, System.Text, and System.Collections namespaces
declared inside it. Notice that the Imports property on the namespace, which is of the
type CodeNamespaceImportCollection, supports an AddRange function for adding an
array of imports to a namespace all at once. There’s also an Add function on the collec-
tion that allows imports to be added one at a time.

 If you were to generate C# code for the namespace named mimsyNamspace, it
would appear as follows:

namespace Mimsy
{
  using System;
  using System.Text;
  using System.Collections;
}

As you can see, the using declarations have been emitted inside the namespace decla-
ration, mirroring the way that the Imports collection is defined as a property within
the CodeDOM’s CodeNamespace type. Now that you can create a basic container for
your dynamically generated program structure, let’s add a type declaration.
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4.3.2 Adding a class to a namespace

At this point, you want to be able to generate some C# code so you can visualize your
code graphs at each step. The function GenerateCSharpCodeFromNamespace, shown
in the following listing, will be referenced from time to time in the remainder of this
section to do that.

static string GenerateCSharpCodeFromNamespace(CodeNamespace ns)
{
  CodeGeneratorOptions genOpts = new CodeGeneratorOptions
  {
    BracingStyle = "C",
    IndentString = "  ",
    BlankLinesBetweenMembers = false
  };
  StringBuilder gennedCode = new StringBuilder();
  using (StringWriter sw = new StringWriter(gennedCode))
  {
    CodeDomProvider.CreateProvider("c#")
      .GenerateCodeFromNamespace(ns, sw, genOpts);
  }
  return gennedCode.ToString();
}

This helper function calls GenerateCodeFromNamespace on the C# code provider with
some popular options. The source code that’s generated is streamed into a String-
Builder using a StringWriter and returned to the caller as a String.

 You can add a type to a code graph with CodeTypeDeclaration. The following
lines of code add a class to the code graph named Jubjub:

CodeTypeDeclaration jubjubClass =
  new CodeTypeDeclaration("Jubjub")
{
  TypeAttributes = TypeAttributes.NotPublic
};

Setting the TypeAttribute to NotPublic will cause the Jubjub type to be marked as
an internal class in C#. If you wanted to expose the class as public, you could use
Public TypeAttribute instead. It’s important to note that unlike many of the other
types highlighted in this chapter, the TypeAttribute enumerated type isn’t in one of
the CodeDOM namespaces. It’s defined in the System.Reflection namespace. As you
dig deeper into the CodeDOM, more references to the Reflection API will surface.

 Now you’re ready to add a member field to the Jubjub class. You do that by creat-
ing a CodeMemberField object, setting its name and type, then adding it to the Jubjub
class Members collection:

CodeMemberField wabeCountFld =
  new CodeMemberField(typeof(int), "_wabeCount")
{

Listing 4.5 The GenerateCSharpCodeFromNamespace helper function
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  Attributes = MemberAttributes.Private
};

jubjubClass.Members.Add(wabeCountFld);
mimsyNamespace.Types.Add(jubjubClass);

Note that after creating the member field object and adding it to the Members of
the class, the Jubjub class was also added to the namespace’s Types collection. The
JubJub class was constructed independently of the namespace and then inserted
into it. Some other DOMs you may have used operate differently by providing fac-
tory functions within each container, which create and then attach child objects in
the hierarchy. The CodeDOM however, uses a more free form, disconnected create-
then-attach model.

 Let’s look at the code that would be generated from what’s been constructed so
far. Calling the GenerateCSharpCodeFromNamespace function shown earlier and pass-
ing a reference to the mimsyNamespace yields the following output:

namespace Mimsy
{
  using System;
  using System.Text;
  using System.Collections;

  internal class Jubjub
  {
    private int _wabeCount;
  }
}

4.3.3 Adding a constructor to a class

Our code graph now has a namespace with imports and an internal class named Jub-
jub containing a private field. But to do some work, you need to add other members
like methods and properties. Before you add those, however, let’s add a constructor to
the Jubjub class with the CodeConstructor type:

CodeConstructor jubjubCtor = new CodeConstructor()
{
  Attributes = MemberAttributes.Public
};

By using a MemberAttribute of Public, this constructor object will be marked as Public
in the code graph. The code provider will use that metadata to generate the construc-
tor as public in the source code that’s emitted. Another similar-looking type in the
CodeDOM called CodeTypeConstructor may also be used to add constructors to
classes. But that kind of constructor will be marked as static in C# (or Shared in
Visual Basic). The nomenclature here is significant. The word Type appearing in
the class name between Code and Constructor means that it creates a constructor
for the type (the class) that’s emitted, not for instances of a class. Not all .NET lan-
guages support static constructors, though, so be aware of your target language before
attempting to generate them into a specific language.
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 Before attaching the constructor to the Jubjub class, you need to add a parameter
to it using CodeParameterDeclarationExpression. As we showed earlier when adding
a member field to the class, parameters also need to declare a type and a name. For
the on-going example, the code that adds an integer parameter called wabeCount to the
Jubjub constructor looks like this:

var jubjubCtorParam =
  new CodeParameterDeclarationExpression(
    typeof(int), "wabeCount");

Note that when CodeDOM type names get long, we sometimes use the var keyword to
make the code more readable. We’re not doing that to be lazy, and we only do it when
it increases comprehension. You need to add the parameter expression to the con-
structor next. To do that, add the expression to the Parameters collection on the
constructor object:

jubjubCtor.Parameters.Add(jubjubCtorParam);

4.3.4 Adding statements to a member

To make the newly added constructor do something, you need to add statements to its
Statements collection. All the statement types in the CodeDOM derive from a base
class named CodeStatement. Some of the more common statement types are shown in
figure 4.3. Statements use expressions to refer to objects and to provide other basic
building blocks for a program. CodeDOM expressions share a base class called Code-
Expression. Some of the more common expression types are shown in figure 4.2. You
can recognize statement and expression classes quickly in the CodeDOM because their
type names conveniently end in Statement and Expression, respectively.

 To do the work of assigning the wabeCount constructor parameter to the
_wabeCount member field, use the following CodeStatement and CodeExpression
derivatives:

■ CodeFieldReferenceExpression—To refer to the _wabeCount field
■ CodeThisReferenceExpression—To include a this reference
■ CodeArgumentReferenceExpression—To refer to the wabeCount parameter
■ CodeAssignStatement—To perform the assignment

Let’s begin by creating reference expressions for the _wabeCount member field and
the wabeCount constructor argument. Using one type to create objects and another
type to reference them is a common pattern in the CodeDOM. For example, the
_wabeCount integer was defined as a member of the Jubjub class using the Code-
MemberField type, which is a subclass of the CodeTypeMember class (shown in figure 4.1).
But to refer to that member in a statement, we use a CodeFieldReferenceExpression,
which is, as its name implies, derived from CodeExpression.

 The following code snippet builds an assignment expression using the argument and
member references to assign the value of the constructor argument to the member field.
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The assignment statement will then be added to the Statements collection of the con-
structor. The code to perform all of these steps looks like this:

var refWabeCountFld =
  new CodeFieldReferenceExpression(
    new CodeThisReferenceExpression(), "_wabeCount");

var refWabeCountArg =
  new CodeArgumentReferenceExpression("wabeCount");

var assignWabeCount =
  new CodeAssignStatement(refWabeCountFld, refWabeCountArg);

jubjubCtor.Statements.Add(assignWabeCount);

After you’ve been writing code graphs for a while, your brain will be able to see this
sequence of steps more functionally as:

jubjubCtor.Statements.Add(
  new CodeAssignStatement(
    new CodeFieldReferenceExpression(
      new CodeThisReferenceExpression (),
      "_wabeCount"),
    new CodeArgumentReferenceExpression(
      "wabeCount")));

When you see code written by CodeDOM experts, it will often have this more compact,
fluent look to it. For now, let’s stick to the step-by-step model until you get the hang of
it. If you generated the C# code for what we’ve shown so far, you might be surprised.
The Jubjub class would still be devoid of statements. What did you miss? Let’s take
inventory for your actions so far. You:

■ Created a namespace
■ Added two imports to the namespace
■ Created a class
■ Added a member field to the class
■ Attached the class to the namespace
■ Created a constructor

Generating explicit this references
When people write code by hand, including unnecessary references to the this
parameter (or the Me parameter in VB) is sometimes considered bad form because it
clutters up the code. But when you automate the generation of source code, you may
want to be more explicit and include this references for safety. Who knows when a
local variable or parameter will get introduced in the future that inadvertently
obscures a class member by name? But if your machine-generated code uses suffi-
ciently unique names or is intended to be edited by developers, you might want to
omit the this references, because doing so can increase comprehension. You can
do that by passing null whenever you might have included a CodeThisReference-
Expression in the construction of an expression.
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■ Created an assignment expression
■ Added the assignment expression to the constructor

Aha! We forgot to have you add the constructor to the Members collection on the Jubjub
class! Our omission was deliberate, because we wanted to demonstrate that you don’t
have to attach complete objects to a CodeDOM code graph. You could, for example,
attach a container object like a CodeTypeDeclaration to a namespace before you add
members to it. It’s perfectly acceptable to do that, even when the order of attachment
would cause the graph to produce an invalid object.

 The CodeDOM doesn’t perform any kind of verification on the graph until you
attempt to generate something from it using one of the code providers. The Code-
DOM’s style of creating objects and then attaching them promotes reusability, as you’ll
see, but it can lead to errors of omission as you try to keep track of what you’re doing
in a complex code graph.

The other reason for failing to attach the constructor in the preceding sequence of
steps is to give you some encouragement about the mistakes you’ll invariably make
when you begin constructing your own code graphs. Building code by hand is confus-
ing at times. Don’t worry about slipping up. Those kinds of mistakes can be great
learning experiences. Correcting the problem is simple enough. You can attach the
constructor to the class like this:

jubjubClass.Members.Add(jubjubCtor);

If you generate the code for this example now, you’ll see the C# code shown in the fol-
lowing listing on the console.

namespace Mimsy
{
  using System;
  using System.Text;
  using System.Collections;

  internal class Jubjub
  {
    private int _wabeCount;

New respect for your tools
Building expressions by hand forces you to think like a programming language and a
compiler all at once. Many developers have never tried to understand how their tools
work, so the transition into that kind of metaprogramming mindset can be challeng-
ing. As you gain respect for what your software tools have been doing for you behind
the scenes, you’ll also become a better software craftsperson. By understanding how
computations are expressed inside the machine, useful patterns will begin to emerge
in everyday code that you couldn’t perceive before.

Listing 4.6 Code-graph–generated class with a field and a constructor



120 CHAPTER 4 Generating code with the CodeDOM
    public Jubjub(int wabeCount)
    {
      this._wabeCount = wabeCount;
    }
  }
}

4.3.5 Adding a property to a class

Our little Jubjub class is shaping up nicely, but it doesn’t do much yet. Let’s add a
property to get access to the private member field from outside the class. The follow-
ing listing shows how you can add a simple integer type property named WabeCount to
the class.

CodeMemberProperty wabeCountProp =
  new CodeMemberProperty() {
  Attributes = MemberAttributes.Public
    | MemberAttributes.Final,
  Type = new CodeTypeReference(typeof(int)),
  Name = "WabeCount"
};

wabeCountProp.GetStatements.Add(
  new CodeMethodReturnStatement(refWabeCountFld));

jubjubClass.Members.Add(wabeCountProp);

Generating the code from the graph now produces a property that looks like this
in C#:

public int WabeCount
{
  get
  {
    return this._wabeCount;
  }
}

In listing 4.7, a CodeMemberProperty was created, marked with the Public and Final
attributes, given the integer type, and named WabeCount. Marking a type as Public is
familiar enough, but what does marking it as Final mean? In the CLR, marking a class
as final makes it nonvirtual. You saw references to this metadata marker in IL code in
chapter 2. If you removed the Final attribute from the code in listing 4.7 and ran it
again, the property would be generated like this instead:

public virtual int WabeCount
{
  get
  {
    return this._wabeCount;
  }
}

Listing 4.7 Adding a property to the code graph
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Method and property members of a CodeDOM-generated type are marked as virtual
(or not Final) by default. You want the WabeCount property to be nonvirtual, so
you’ve explicitly marked it as Final.

 A CodeDOM class called CodeTypeReference is used to mark the type of the prop-
erty as an integer. So far you’ve only needed references to .NET’s built-in types for
things like this, but what if you needed to reference a type in a private assembly
instead? You could load the type into the generator program and use the built-in
typeof function as you did for integers. But the CodeTypeReference class has an over-
loaded constructor that lets you pass a string instead. This is handy when you don’t
want to load the dependencies that the generated code will need later during code
generation. For example, if you had a type called Vorpal that you wanted to designate
to the generated property, you could set its Type property in the code graph by using a
literal string containing the type name:

Type = new CodeTypeReference("Vorpal"),

By doing so, the compiled assembly containing the Vorpal type wouldn’t need to be
loaded during code generation to obtain a reference to it. Using magic strings like this
can lead to errors, so be aware that the chances for making mistakes will go up if you
decide not to load and reference the assemblies during code generation upon which
the generated code will depend later on.

 Unlike method and constructor member types in the CodeDOM, the CodeMember-
Property used in listing 4.7 has no Statements property at all. Instead, it has two
properties named GetStatements and SetStatements that are used to define the bod-
ies of the generated property’s get (accessor) and set (mutator), respectively. Notice
that we’ve added a flow control statement of type CodeMethodReturnStatement to the
GetStatements property that uses the same reference to the _wabeCount member
field that we used earlier in the constructor statements. In general, once you’ve cre-
ated a reference object in the CodeDOM, using it over and over again wherever you
need that referenced object in the code graph is appropriate.

4.4 Metaprogramming with the CodeDOM
Beyond simple classes with fields and properties, almost any kind of CLR type program-
ming construct can be generated into a CodeDOM code graph. This section examines
how to add branching logic, reference class members, invoke methods, and more.

4.4.1 Using branching logic

To demonstrate the addition of branching logic to a code graph, let’s modify the
WabeCount property by adding a mutator (setter). Adding a simple assignment from
the property’s value to the member field would be straightforward with code like this:

wabeCountProp.SetStatements.Add(
  new CodeAssignStatement(
    refWabeCountFld,
    new CodePropertySetValueReferenceExpression()));
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After adding this assignment statement to the property’s mutator, the generated code
for the entire property would look like this:

public int WabeCount
{
  get
  {
    return this._wabeCount;
  }
  set
  {
    this._wabeCount = value;
  }
}

That’s nice, but what if you wanted to add business logic to the class so that the
_wabeCount member field can never have a negative value set into it? The easiest way
to do that is to test the value assigned to the property’s mutator, assigning a zero value
when the supplied value is out of the valid range. Later in this chapter we show you
how to do something even more useful when exceptional conditions occur.

 Adding flow control statements to a code graph can be tricky, so let’s do this in a
few steps. First, you need a comparison operation that produces a Boolean result,
which tells you if the value supplied to the mutator is less than the boundary value you
want to test for. The two parts you want to compare can be coded as CodeDOM objects
like this:

var suppliedPropertyValue =
  new CodePropertySetValueReferenceExpression();
var zero = new CodePrimitiveExpression(0);

The names suppliedPropertyValue and zero refer to the value keyword in the muta-
tor and the literal integer value 0, respectively. These names will make the code that
follows easier to read and understand.

 It’s interesting to note that there’s a specific CodeDOM expression type for refer-
ring to the value in a property setter, sometimes called a mutator. For the zero value
you need to compare to, the CodePrimitiveExpression type is used. The CodeDOM
doesn’t have specific classes to represent the .NET Common Type System (CTS) types
(as some other expression-oriented metaprogramming interfaces do). Whenever you
need to express literal values in the CodeDOM, a CodePrimitiveExpression will typi-
cally work fine.

 Now that you have a way to refer to the two values to compare, you need to per-
form a less-than comparison operation on them. Standard operators that take two
parameters are described in the CodeBinaryOperatorType enumerated type in the
CodeDOM. These operators fall into several logical groups.

■ Math—Add, subtract, multiply, divide, and modulus
■ Identity—IdentityInequality and IndentityEquality
■ Bitwise—BitwiseOr and BitwiseAnd
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■ Boolean—BooleanOr and BooleanAnd
■ Rank—ValueEquality, LessThan, LessThanOrEqual, GreaterThan, and Greater-

ThanOrEqual

We’re interested in using the CodeBinaryOperatorType.LessThan to compare the
supplied property value to zero, so create a CodeBinaryOperatorExpression that does
that. Read it from top to bottom to get a feel for the expression’s meaning:

var suppliedPropValIsLessThanZero =
  new CodeBinaryOperatorExpression(
    suppliedPropertyValue,
    CodeBinaryOperatorType.LessThan,
    zero);

Do you agree that the descriptive variable names for the value keyword object and the
literal value 0 make the preceding code more readable? You’re ultimately seeking to
create a statement for the property’s SetStatements that looks like this when emitted
as C#:

if (value < 0)
{
  this._wabeCount = 0;
}
else
{
  this._wabeCount = value;
}

It’s important to understand that the suppliedPropValueIsLessThanZero expression
represents only the Boolean test of the whole expression—the part that reads (value
< 0). To create the if and else parts of the statement, you need to use that test in a
CodeConditionStatement, as shown in the following listing.

var testSuppliedPropValAndAssign =
  new CodeConditionStatement(
    suppliedPropValIsLessThanZero,
    new CodeStatement[]
    {
      new CodeAssignStatement(
      refWabeCountFld,
      zero)
    },
    new CodeStatement[]
    {
      new CodeAssignStatement(
        refWabeCountFld,
        suppliedPropertyValue)
    });

wabeCountProp.SetStatements.Add(
  testSuppliedPropValAndAssign);

Listing 4.8 Creating an if/else construct with a CodeConditionStatement
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The binary operator expression suppliedPropValueIsLessThanZero shown earlier is
used as the first parameter when building the condition. The (value < 0) test will fol-
low the if in the code that gets generated. The other two parameters are the groups
of statements that will become the blocks following the if part and the else part in
the resulting code. An overload for the CodeConditionStatement constructor exists
that takes one less parameter. As you might have guessed, you can use that constructor
whenever you need to generate an if code condition statement for which you want no
associated else branch to be defined in the code graph.

 After adding the condition expression as the SetStatements on the WabeCount
property, the generated code for the property’s mutator now becomes the following:

set
{
  if ((value < 0))
  {
    this._wabeCount = 0;
  }
  else
  {
    this._wabeCount = value;
  }
}

This looks correct. The only potential annoyance is the extraneous pair of parenthe-
ses following the if keyword. This is unavoidable using the CodeDOM for a good rea-
son. If you were chaining together multiple expressions using arithmetic or Boolean
logic, and the C# code provider didn’t emit parentheses around each binary expres-
sion individually, elusive operator precedence bugs could be introduced into the gen-
erated code. The C# code provider could perform look-behind and look-ahead
parsing logic in the code graph to optimize the parentheses away, but that would add
another kind of complexity you don’t want. Besides, the extra parentheses are benign
and in some cases can add real clarity to the code that’s emitted.

4.4.2 Referencing a member

To enforce the new business logic used in the WabeCount property mutator com-
pletely, you need to revisit the Jubjub constructor you created at the beginning of this

Beware the CodeSnippetExpression
Although the CodeSnippetExpression type comes in handy from time to time, you
should avoid it for the most part. It works by inserting a literal code fragment into the
generated code. But if a code fragment inserted this way uses a C++ specific feature,
for example, you’ll never be able to generate C# or VB code from code graphs that
include it. On the other hand, if you want to use a particular language feature for
which the CodeDOM has no support, and you know that the target language will never
change, code snippet types provide useful flexibility.
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example and fix it. Remember that the constructor assigned its argument value to the
private _wabeCount member field directly. What if the valued supplied during con-
struction is less than zero? That assignment should be done through the WabeCount
property so that disallowed values can be dealt with, keeping all your precious Jubjub
objects in pristine condition. To do this, define a CodePropertyReferenceExpression
and use it instead of the member field reference that was used to initially build the
CodeAssignStatement that will serve as the constructor’s body. The property refer-
ence and the modified assignment statement follow:

var refWabeCountProp =
  new CodePropertyReferenceExpression(
    new CodeThisReferenceExpression(),
    "WabeCount");

var assignWabeCount =
  new CodeAssignStatement(
    refWabeCountProp, refWabeCountArg);

Generating the code for the example at this point yields the beautifully formatted and
highly functional Jubjub class containing a private, instance integer member field, a
property for accessing the field that enforces a simple bit of range-checking logic, and
a constructor that allows the type to be instantiated safely by invoking the property’s
setter. This class is shown in listing 4.9.

namespace Mimsy
{
  using System;
  using System.Text;
  using System.Collections;

  internal class Jubjub
  {
    private int _wabeCount;
    public Jubjub(int wabeCount)
    {
      this.WabeCount = wabeCount;
    }
    public int WabeCount
    {
      get
      {
        return this._wabeCount;
      }
      set
      {
        if ((value < 0))
        {
          this._wabeCount = 0;
        }
        else
        {

Listing 4.9 A more complete CodeDOM-generated Jubjub class
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          this._wabeCount = value;
        }
      }
    }
  }
}

You can find the source code for the Jubjub code generator to this point in the sam-
ple code for the book as the TypeDeclarations project.

 C++ and C# developers reading this may be wondering why you didn’t attempt to
emit the body of the WabeCount property setter using the ternary operator. After all,
the following single line of code is much more succinct:

this._wabeCount = (value < 0) ? 0 : value;

Indeed, many C++ and C# developers prefer this syntax for simple option-based test-
ing over if/else and switch/case language constructs, which are a bit bulkier and
potentially reduce the reader’s comprehension. Unfortunately, the CodeDOM has no
expression type that supports simple test-and-branch-to-value logic like this. Interest-
ingly, though, expression trees, examined in detail in chapter 6, support ternary opera-
tions very well.

4.4.3 Invoking methods

Suppose you’d like the Jubjub class developed so far to be able to track all the values
set by calling the WabeCount property mutator. To do that, you need some sort of array
to track the changed values. First, you’ll create a CodeTypeReference to an ArrayList
from the System.Collections namespace. Then you’ll create another CodeMember-
Field and add it to the Members collection of the Jubjub class:

var typrefArrayList =
  new CodeTypeReference("ArrayList");
CodeMemberField updatesFld =
  new CodeMemberField(typrefArrayList, "_updates");
jubjubClass.Members.Add(updatesFld);

If you generated the code for the mimsyNamespace now, a new line would appear
inside the Jubjub class definition:

private ArrayList _updates;

Had you built the CodeTypeReference using typeof(ArrayList) instead of a string,
that new line would have appeared differently as:

private System.Collections.ArrayList _updates;

Using the typeof function is definitely the preferred method. But even though you
can insert import statements into a CodeDOM namespace, the CodeDOM itself has no
concept of imports. It’s a machine, so it doesn’t need such pleasantries.

 When you use a type like typeof(ArrayList), the CodeDOM will always emit it as a
fully qualified type name into the generated source code. When you expect humans



127Metaprogramming with the CodeDOM
to read the code that’s produced, those long names can detract from the readability.
We used a string to make it friendlier to the eyes. Besides, you already inserted an
import into the code graph namespace for the System.Collections namespace. Any
generated code that refers to classes defined in that namespace (such as the Array-
List) in a non-fully qualified way will resolve correctly.

 Next, you need to update the constructor to instantiate an ArrayList. For this, use
a CodeObjectCreateExpression, which you can use whenever you need to instantiate
a class. Think of it as the new operator for the CodeDOM:

var refUpdatesFld =
  new CodeFieldReferenceExpression(
    new CodeThisReferenceExpression(), "_updates");
var newArrayList =
  new CodeObjectCreateExpression(typrefArrayList);
var assignUpdates =
  new CodeAssignStatement(
    refUpdatesFld, newArrayList);
jubjubCtor.Statements.Add(assignUpdates);

Before instantiating the ArrayList, a CodeFieldReferenceExpression that refers to
the new _updates field is created. It’s used here and again throughout the remaining
example code shown in this section. A CodeAssignStatement is built to do the assign-
ment and then added to the Jubjub class constructor’s Statements. The constructor
now emits as

public Jubjub(int wabeCount)
{
  this._updates = new ArrayList();
  this.WabeCount = wabeCount;
}

Notice that we deliberately inserted the construction of the ArrayList before the use
of the WabeCount property mutator. This was intentional because that property muta-
tor will be updated in a moment to add an item to the ArrayList whenever the value
is changed. If the ArrayList hadn’t been allocated when you tried to add an item to
it, a NullReferenceException would be thrown. The order of statements in the con-
structor is important. To modify the WabeCount property to perform the update, you
need to add a CodeMethodInvokeExpression to its SetStatements property, like this:

wabeCountProp.SetStatements.Add(
  new CodeMethodInvokeExpression(
    new CodeMethodReferenceExpression(
      refUpdatesFld,
      "Add"),
    refWabeCountFld));

Now the mutator for the WabeCount property in the Jubjub class will be generated
like this:

set
{
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  if ((value < 0))
    this._wabeCount = 0;
  else
    this._wabeCount = value;
  this._updates.Add(this._wabeCount);
}

Every time the property mutator is invoked, it will store the new value in the Array-
List. Now all you need is some sort of history function that can report out all the pre-
viously set values for the property. Before diving into the code graph construction of
that function, however, let’s look at how the function should look when you’re done.
The following listing shows the source code you’d like to generate for a method in the
Jubjub class named GetWabeCountHistory.

public string GetWabeCountHistory()
{
  StringBuilder result = new StringBuilder();
  for (int ndx = 0; ndx < this._updates.Count; ndx++)
  {
    if ((ndx == 0))
      result.AppendFormat("{0}", this._updates[ndx]);
    else
      result.AppendFormat(", {0}", this._updates[ndx]);
  }
  return result.ToString();
}

This is a fairly simple function expressed in C#, but to code this into a CodeDOM code
graph will take a bit of mental tenacity on your part. We’ll go step by step to help you
think through this. To begin, you need to create a CodeDOM object for the method
and add it to the Jubjub class. Remember how you used a CodeMemberProperty ear-
lier in this chapter to create the WabeCount property? Creating a method with the
CodeMemberMethod type is done similarly:

CodeMemberMethod methGetWabeCountHistory =
  new CodeMemberMethod
  {
    Attributes = MemberAttributes.Public
     | MemberAttributes.Final,
    Name = "GetWabeCountHistory",
    ReturnType = new CodeTypeReference(typeof(String))
  };
jubjubClass.Members.Add(methGetWabeCountHistory);

The new method, called GetWabeHistory, will be public and non-virtual and return
a String. We’ve also added it to the Jubjub class to make sure you don’t forget to do it
later. Remember: it’s okay to add the method to the code graph even though you
haven’t added any statements to it yet. Looking back at listing 4.10, the next steps are
instantiating a StringBuilder object and assigning its reference to a local variable
named result. Here’s how it’s done:

Listing 4.10 A function you’d like to generate into the Jubjub class
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methGetWabeCountHistory.Statements.Add(
  new CodeVariableDeclarationStatement(
    "StringBuilder", "result"));
var refResultVar =
  new CodeVariableReferenceExpression("result");
methGetWabeCountHistory.Statements.Add(
  new CodeAssignStatement(
    refResultVar,
    new CodeObjectCreateExpression(
      "StringBuilder")));

This code block begins by using a CodeVariableDeclarationStatement to create a
StringBuilder local variable called result. Then a reference to the result variable
is created for use here and later on when you need to invoke methods on it. Lastly, an
assignment statement is added to the new method’s Statements property to invoke
the new operator on a StringBuilder and assign the reference to the result variable.

 Referring to listing 4.10 again, the next thing you need to do is build a for loop to
iterate over each of the items in the _updates ArrayList and add formatted strings
to the StringBuilder you created. But the C# syntax shown in listing 4.10 can’t be cre-
ated exactly that way in a CodeDOM code graph. The C# compiler exposes certain bits
of syntactical sugar that make code more readable. One of those sugary treats is the abil-
ity to instantiate a local variable like the ndx variable inside the for expression, like this:

for (int ndx = 0; ndx < this._updates.Count; ndx++)

In the CodeDOM however, you must construct it this way:

int ndx;
for (ndx = 0; ndx < this._updates.Count; ndx++)

Before you create the for loop, let’s create that local integer variable called ndx and a ref-
erence to it. The ndx variable is used several times within the loop shown in listing 4.10.
Having the reference handy will make the coding work inside the loop a lot less wordy:

methGetWabeCountHistory.Statements.Add(
  new CodeVariableDeclarationStatement(
    typeof(int), "ndx"));
var refNdxVar =
  new CodeVariableReferenceExpression("ndx");

Now you’re ready to create the for loop. This one’s a doozy, as the saying goes. Before
you look at the code that will create and insert this construct that looks so simple in
C#, you need to think about how a for loop is constructed. It has an initialization part,
a test part, an increment part, and a block of statements. The CodeIterationState-
ment type in the CodeDOM takes four parameters to its constructor. They map to the
for loop parts perfectly. You’ll perform a simple CodeAssignStatement for the initiali-
zation part of the constructor to assign zero to the local variable ndx:

new CodeAssignStatement(
  refNdxVar,
  new CodePrimitiveExpression(0))
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The next part is the test to see if the loop block should execute or not. You can do this
with a CodeBinaryOperatorExpression of type LessThan comparing the reference to
the ndx local variable to the value of the Count property for the _updates ArrayList.
You’ll also use the reference to the _updates field you built earlier to make the code a
bit easier to read:

new CodeBinaryOperatorExpression(
  refNdxVar,
  CodeBinaryOperatorType.LessThan,
  new CodePropertyReferenceExpression(
    refUpdatesFld,
    "Count"))

Now you’re ready to tackle the increment expression. The CodeDOM doesn’t have a
way to express the ndx++ statement as it’s shown in listing 4.10, but you could write it
as ndx = ndx + 1. That’s how you’ll build it into the code graph. You’ll need another
CodeBinaryOperatorExpression for that. This one will be of type Add. You’ll also
need another CodeAssignStatement to assign the result of the addition operator back
to the local ndx variable:

new CodeAssignStatement(
  refNdxVar,
  new CodeBinaryOperatorExpression(
    refNdxVar,
    CodeBinaryOperatorType.Add,
    new CodePrimitiveExpression(1)))

The body of the for iterator comes next, and at the top of the graph is an if/else
statement, which you learned about when building the setter on the WabeCount prop-
erty. As you did back then, use a CodeConditionStatement to express the logic shown in
listing 4.10. As you recall, the first part of a CodeConditionStatement is a test. Your test
in this case is (ndx == 0), which looks like another CodeBinaryOperatorExpression.
This one will be of type ValueEquality, comparing the reference to the ndx local vari-
able to zero:

  new CodeBinaryOperatorExpression(
    refNdxVar,
    CodeBinaryOperatorType.ValueEquality,
    new CodePrimitiveExpression(0))

The block following the if in listing 4.10 is a method invocation, so code that into the
graph as a CodeMethodInvokeExpression. To insert that into a CodeStatement array
as the CodeConditionStatement requires, you must wrap it in a CodeExpression-
Statement. This is a condition of the CodeDOM that must be met when CodeStatement
derivatives are required:

new CodeExpressionStatement(
  new CodeMethodInvokeExpression(
    new CodeMethodReferenceExpression(
       refResultVar,
      "AppendFormat"),
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    new CodePrimitiveExpression("{0}"),
    new CodeArrayIndexerExpression(
      refUpdatesFld,
      refNdxVar)))

Note how you’re invoking the AppendFormat method using the reference to the
results variable that you saved earlier, passing the "{0}" format string argument and
an indexed value from the _updates ArrayList at the index specified by the refer-
ence to the local ndx variable.

 The else block looks similar, so we won’t show the CodeDOM code for it here. The
only difference is that the format string passed to the AppendFormat method on the
StringBuilder is slightly different. It prefixes commas to the output for the second and
subsequent items during the iteration to make the output a well-formatted comma-
separated list. Stringing together all of the blocks concerning the CodeIteration-
Statement so far creates the one large fluent expression shown in the following listing.

methGetWabeCountHistory.Statements.Add(
  new CodeIterationStatement(
    new CodeAssignStatement(
      refNdxVar,
      new CodePrimitiveExpression(0)),
    new CodeBinaryOperatorExpression(
      refNdxVar,
      CodeBinaryOperatorType.LessThan,
      new CodePropertyReferenceExpression(
        refUpdatesFld,
        "Count")),
    new CodeAssignStatement(
      refNdxVar,
      new CodeBinaryOperatorExpression (
        refNdxVar,
        CodeBinaryOperatorType.Add,
        new CodePrimitiveExpression(1))),
    new CodeConditionStatement(
      new CodeBinaryOperatorExpression(
        refNdxVar,
        CodeBinaryOperatorType.ValueEquality,
        new CodePrimitiveExpression(0)),
      new CodeStatement[] {
        new CodeExpressionStatement(
          new CodeMethodInvokeExpression(
            new CodeMethodReferenceExpression(
              refResultVar,
              "AppendFormat"),
            new CodePrimitiveExpression("{0}"),
            new CodeArrayIndexerExpression(
              refUpdatesFld,
              refNdxVar)))},
      new CodeStatement[] {
        new CodeExpressionStatement(

Listing 4.11 Creating an iterator using the CodeDOM
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          new CodeMethodInvokeExpression(
            new CodeMethodReferenceExpression(
              refResultVar,
              "AppendFormat"),
            new CodePrimitiveExpression(", {0}"),
            new CodeArrayIndexerExpression(
              refUpdatesFld,
              refNdxVar)))})));

Although the code is somewhat difficult to read all at once, breaking it down one con-
structor parameter at a time as we did earlier makes it much easier to understand. We
recommend that, when you’re building complex code graphs by hand, you break
down each piece of the program structure and logic into smaller parts. Then you can
reassemble them into larger, more fluent expressions to whatever depth suits you and
other potential readers of the code generator.

 The last thing you must do to complete the GetWabeHistory method is return a
value. You can do this by building a CodeMethodReturnStatement that invokes the
ToString method on the reference to the result local variable that you saved early on:

methGetWabeCountHistory.Statements.Add(
  new CodeMethodReturnStatement(
    new CodeMethodInvokeExpression(
      new CodeMethodReferenceExpression(
        refResultVar, "ToString"))));

The complete example code for this section can be found in the book’s source code
repository in a project named AddingAndInvokingMethods in chapter 4. The output
of the metaprogram shown in the next listing has a GetWabeHistory method that
closely matches the goal that was shown in listing 4.10.

namespace Mimsy
{
  using System;
  using System.Text;
  using System.Collections;

  public class Jubjub
  {
    private int _wabeCount;
    private ArrayList _updates;
    public Jubjub(int wabeCount)
    {
      this._updates = new ArrayList();
      this.WabeCount = wabeCount;
    }
    public int WabeCount
    {
      get
      {
        return this._wabeCount;
      }

Listing 4.12 The Jubjub class with its new GetWabeHistory method
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      set
      {
        if ((value < 0))
        {
          this._wabeCount = 0;
        }
        else
        {
          this._wabeCount = value;
        }
        this._updates.Add(this._wabeCount);
      }
    }
    public string GetWabeCountHistory() 
    {
      StringBuilder result;
      result = new StringBuilder();
      int ndx;
      for (ndx = 0; (ndx < this._updates.Count); ndx = (ndx + 1))
      {
        if ((ndx == 0))
        {
          result.AppendFormat("{0}", this._updates[ndx]);
        }
        else
        {
          result.AppendFormat(", {0}", this._updates[ndx]);
        }
      }
      return result.ToString();
    }
  }
}

We coded method invocations into the code graph in this section, but not to methods
defined in our dynamically generated Jubjub class. In the next couple of sections, we
place the namespace into a CodeCompileUnit, compile it to memory, instantiate the
Mimsy.Jubjub class dynamically, change the WabeCount property value a few times,
and inspect the history of our changes by calling the GetWabeCountHistory method
that we added.

4.4.4 Compiling assemblies

Before you can generate an assembly from a namespace, you must place it into Code-
CompileUnit. This class is rather oddly named and seems even stranger given that the
compilation process, which is done through a CodeDomProvider derived type, is per-
formed through a method named CompileAssemblyFromDom. You might have
expected that method to be called something like CompileAssemblyFromCompile-
Unit. Is the CodeCompileUnit what the progenitors of the CodeDOM at Microsoft
thought of as the pinnacle DOM type for code graphs? The naming seems to imply
that, but we don’t know.
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 The code shown in the following listing is a useful helper function called Compile-
NamespaceToAssembly. It’s helpful because it combines a few of the steps that must be
performed when a CodeNamespace needs to be compiled into in-memory assembly.

static Assembly CompileNamespaceToAssembly(
  CodeNamespace ns)
{
  var ccu = new CodeCompileUnit();
  ccu.Namespaces.Add(ns);
  CompilerParameters cp =
    new CompilerParameters() 
    {
      OutputAssembly = "dummy",
      GenerateInMemory = true
    };
  CompilerResults cr =
    CodeDomProvider.CreateProvider("c#")
    .CompileAssemblyFromDom(cp, ccu);
  return cr.CompiledAssembly;
}

The function begins by creating a CodeCompileUnit and adding the CodeNamespace
passed in as a parameter to the Namespaces collection. Then a CompilerParameters
object is constructed for which two properties are set:

■ OutputAssembly—The name of the assembly in memory or on disk.
■ GenerateInMemory—A flag that indicates whether the assembly should be made

available immediately as an in-memory object.

The OutputAssembly is given the name "dummy" here because you don’t care what it’s
called. The GenerateInMemory flag is set to true because you don’t intend for the
compiled assembly to be written to disk. You’re going to consume it right away in
the running application. Understand, though, that in-memory compilation could lead to
what amounts to a memory leak in your programs due to the way that the CodeDOM
marks the newly compiled assembly. If you’re loading assemblies once at the start of
an application, and expect them to stay in memory until the program completes, this
shouldn’t be an issue. But if you’re creating new assemblies again and again through-
out the lifetime of the application, you shouldn’t use the simple, in-memory compila-
tion approach.

 Finally, the CompileAssemblyFromDom method on the CSharpCodeProvider is
called, passing the CompilerParameters and the CodeCompileUnit as parameters.
The result is a CompilerResults object that has a CompiledAssembly property refer-
encing the dynamically compiled assembly.

 There are a few things that this helper function should be doing but isn’t. Excep-
tions that can be thrown throughout the process aren’t being caught. And the com-
piler may encounter errors in the code graph. For your production applications, you

Listing 4.13 The helper function CompileNamespaceToAssembly
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should use the CompileNamespaceToAssembly method shown in listing 4.13 as a start-
ing point. But you should add the appropriate exception handling and inspect the
Errors collection on the CompilerResults before returning to the caller.

4.4.5 Dynamic invocation

To create a Mimsy.Jubjub object from a dynamically compiled assembly, we’ll use the
helper function named InstantiateDynamicType shown in the following listing. It
fetches the Type metadata for a named class and uses the Activator class to create an
instance of the specified type, passing a variable number of constructor parameters.
The CreateInstance method on Microsoft’s Activator class will attempt to find the
correct constructor based on the type and order of the parameters.

static dynamic InstantiateDynamicType(Assembly asm,
  string typeName, params object[] ctorParams)
{
  Type targetType = asm.GetType(typeName);
  return Activator.CreateInstance(
    targetType, ctorParams);
}

Notice also that the InstantiateDynamicType method returns a C# 4.0 dynamic
type. As you learned in chapter 1, there is no such thing as a dynamic type in C#,
even though the existence of the keyword implies otherwise. Under the covers,
dynamic objects are System.Object instances given special treatment by the com-
piler. They also have a special DynamicAttribute applied to them to allow post-
compilation tooling to continue the process of treating them in special, dynamic
ways. If you want to use the code shown here using an older C# compiler, change
the dynamic keywords to object. Then you can perform your own reflection against
those object instances to invoke the methods and properties dynamically the old-
fashioned way.

 With the helper functions shown in listings 4.12 and 4.13, you’re ready to compile
your mimsyNamespace and exercise the Jubjub class a bit. We’ve also bundled this up
as a method called CompileAndExerciseJubjub shown in the following listing.

Always set the OutputAssembly
If you fail to set some value for the OutputAssembly property of the Compiler-
Parameters, the compiler will pick a random assembly name that’s guaranteed not
to clash with others. You might think that because you’re generating the assembly
for in-memory use, a randomly selected name would be okay. But if you allow the com-
piler to select a random name, you won’t be able to use the assembly reference in
the CompilerResults object that’s returned. Always name your OutputAssembly
when calling one of the Compile methods on a CodeDOM code provider.

Listing 4.14 The helper function InstantiateDynamicType
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static string CompileAndExerciseJubjub(
  CodeNamespace theNamespace, params int[] wabes)
{
  if (wabes == null || wabes.Length == 0)
    return string.Empty;

  Assembly compiledAssembly =
    CompileNamespaceToAssembly(theNamespace);

  dynamic bird = InstantiateDynamicType(
    compiledAssembly, "Mimsy.Jubjub",
    new object[] { wabes[0] });

  for (int ndx = 1; ndx < wabes.Length; ndx++)
    bird.WabeCount = wabes[ndx];

  return bird.GetWabeCountHistory();
}

This test method accepts a CodeNamespace to be compiled and a list of wabes to pass to
the Mimsy.Jubjub object that will be dynamically instantiated. The first wabe is passed
to the constructor, and any remaining ones are set via the WabeCount property. Finally,
the history of all your WabeCount changes is fetched via the GetWabeCountHistory
method and returned to the caller as a string.

 The code for this example can be found in the book’s sample code repository as
the DynamicInvocation project. In that project, you’ll also find a method called
CreateMimsyNamespace that pulls all the code concerning the creation of the
Mimsy.Jubjub code graph into one concise package. You can now invoke the test
function like this:

CodeNamespace mimsyNamespace =
  CreateMimsyNamespace();
Console.WriteLine(
  CompileAndExerciseJubjub(
    mimsyNamespace,
    8, 6, 7, 5, 3, -1, 9));

The console output will appear something like figure 4.4.
 You can see from comparing the output in figure 4.4 with the code above that

the -1 wabe that was passed to the WabeCount property mutator was coerced to the
value 0.

 In this section, you built a code graph dynamically to produce a fairly sophisticated
little class. Then you dynamically assembled the code graph in memory. An instance

Listing 4.15 Compiling and instantiating CodeDOM-generated classes

Figure 4.4 The result of dynamically invoking a 
dynamically generated and dynamically 
assembled class
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of the class was dynamically created then dynamically invoked to get the object into
the state which produced the output shown previously.

 Everything about this example is dynamic. Although it’s a simple example, it’s
important because it highlights a range of tools and techniques that you can use in
your own application to add flexibility and reusability to your applications. You proba-
bly won’t use them all in a single application, but you could if you needed to.

 As a parting exercise, think about the modifications that would be necessary to
make the Jubjub class operate on data types other than integers. Here’s a hint: it can
be done by changing two lines of sample code. With the introduction of a CodeType-
Reference, that change could be reduced to one line. Do you see the connection
between metaprogramming and generic types? Generics are all about reusability, and
metaprogramming provides lots of opportunities for creating reusable data structures
of your own design.

4.5 Summary
This chapter isn’t meant to be an exhaustive reference of the CodeDOM. To be
exhaustive would require an entire book—or two. Instead, our goal here is to open
your mind to the flexibility and richness of the CodeDOM by highlighting a handful of
scenarios you’re likely to face when you begin to generate code and compile assem-
blies dynamically.

 Microsoft has excellent reference materials in the MSDN Library concerning the
CodeDOM. They contain good examples that you can pick up quickly once you’ve
learned the basic skills taught in this chapter. You can also find many excellent exam-
ples of CodeDOM use on the Internet.

 What we’ve done in this chapter however is fundamentally different from all those
examples. Our approach is to teach you systematically how the CodeDOM works and
why it’s constructed as it is. Now that you’ve established a strong foundation for learning

The InternalsVisibleToAttribute
When you run the code in the DynamicInvocation project in the chapter 3 sample
source code, it’ll work. But if you’ve been modifying the code along the way rather
than using the samples provided, you’ll get an interesting failure. Remember at the
beginning of the Mimsy.Jubjub example when you marked the Jubjub class with
the MemberAttribute of NonPublic? That caused the Jubjub class to be generated
as an internal class, if you recall. When you try to instantiate an object from a
dynamically loaded assembly that’s marked internal, the call will fail. That makes
sense, doesn’t it? Why should the running assembly have access to an internal
class in another assembly? It shouldn’t. You have a choice to correct this problem.
You can mark the class as public instead. Or you can set the assembly level attribute
known as InternalsVisibleTo on the dynamic assembly, fully qualifying the name of
another assembly that should have access to types marked as internal within it. This
second method isn’t practical, so we chose instead to mark the class as public in
the DynamicInvocation project sample source.
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about metaprogramming by implementing code as data, those examples provided by
Microsoft and others should be much easier to digest. Furthermore, the prototypes
you established here will serve you well as you study the other metaprogramming facil-
ities that .NET has to offer in the remainder of this book.



Generating code
with Reflection.Emit
In chapter 4, you saw how you can generate code via the CodeDOM. Another
option in .NET lets you do the same thing, except it uses IL directly to create the
code at runtime. This provides a substantial performance boost and access to any
feature supported by the CLR. All the supporting classes exist in the System
.Reflection.Emit namespace, and that’s where you’ll spend your time in this
chapter. We cover how the common opcodes work, and then you’ll see examples
that generate dynamic assemblies and methods.

 The first thing you need to understand is why one would ever bother diving
into the Emitter classes to solve particular problems. That’s what the next sec-
tion discusses.

This chapter covers
■ Scenarios for generating code at runtime
■ A quick overview of opcodes
■ Building code with Reflection.Emit and 

DynamicMethod
139
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5.1 Why Emitter classes?
It’s probably a safe bet to assume that most of the code you’ve written in .NET has fol-
lowed the same general workflow:

■ Write code in your favorite language
■ Compile it
■ Run the results

But what if you were able to write and compile code while your code was executing?
Let’s cover some scenarios where the Emitter classes may come in handy in solving
particular programming problems at runtime.

5.1.1 Support for DSLs

If you’ve ever had to do a lot of text parsing and
processing (whether or not using a .NET-based
language), you probably used something called a
regular expression. Regular expressions are these
somewhat cryptic-looking strings that contain a
wealth of power to get specific textural patterns
in a sea of characters. For example, figure 5.1
shows a regular expression to find phone numbers.

 This may not look like much, but this expression can find a U.S. phone number in
text, so long as it uses hyphens to separate the digits, like this: 123-555-1212. If you
spend time digging into regular expressions, you can do amazing things to pull infor-
mation out of a text file.

 So what does this have to do with emitting opcodes? .NET provides a class called
Regex that provides regular expression support. Here’s how you’d use the previous
expression in .NET to find a phone number:

var phone = 
  "Find this: 123-555-1212. Or this: 123-555-9999.";
var matches = Regex.Match(phone, 
  @"((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}");

while(matches.Success)
{
  Console.Out.WriteLine(matches.Value);
  matches = matches.NextMatch();
}

A regular expression is an example of a DSL. DSLs, as you learned in chapter 1, are typi-
cally smaller, lightweight languages that are tailored to a specific problem. They’re
usually embedded within other languages and frameworks. Regular expressions aren’t
suited to creating complex applications by themselves, but they can easily find URLs in
text from a file an application has loaded into memory.

 The issue in using regular expressions in .NET is that Regex has to parse the expres-
sion to translate it into executable code. That’s where the Emitter classes come into

Figure 5.1 A simple regular expression 
to find phone numbers
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play. Regex uses Reflection.Emit to create a fast implementation of the given regular
expression to perform the operations defined in the expression. If you’re creating
your own DSL and want to use it in your code, you can use Reflection.Emit to compile
the code into IL, which can run as fast as any code written in C# or VB.

NOTE Regular expressions aren’t specific to .NET. They’ve been around
since way before opcodes saw the light of day, so there’s a lot of informa-
tion out there you can find to learn more about these amazing expressions.
One good site to start with is www.regular-expressions.info. You can also check
out DSL in Action by Debasish Ghosh (Manning, 2010) at http://manning
.com/ghosh/.

5.1.2 Moving reflection code into IL

There are times where you need to perform a bit of processing that may not happen
at runtime. The ToString()example in chapter 2 demonstrates why you’d want to use
metaprogramming to reduce to amount of code you write and defer that processing
until it’s needed. You also saw this with the Lazy<T> class in chapter 2. Lazy<T> pro-
vides you with the ability to defer the loading of a value until the user calls the Value
property—at that time, Lazy<T> will create the value. If you never call Value, Lazy<T>
won’t do anything. A similar case happens with serialization. Serialization is the process
where the contents of an object are saved into some kind of persistent storage, like
memory or a file. You can deserialize the object later if needed. Some serialization
strategies can be quite complex, and it’s best to defer execution until you know you
need it.

 Such is the case with XML serialization via the XmlSerializer class. If you’ve never
seen how the XmlSerializer works, it’s pretty simple. Let’s say you had a simple
object with a couple of properties:

public sealed class DataBucket
{
  public Guid Id { get; set; }
  public string Value { get; set; }
}

Serializing an instance of DataBucket takes only a few lines of code:

var target = new DataBucket
{
  Id = Guid.NewGuid(), 
  Value = Guid.NewGuid().ToString("N")
};

using(var stream = new StringWriter())
{
  var serializer = new XmlSerializer(typeof(DataBucket));
  serializer.Serialize(stream, target);
  Console.Out.WriteLine(
    stream.GetStringBuilder().ToString());
}

www.regular-expressions.info
http://manning.com/ghosh/
http://manning.com/ghosh/
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This would print the following XML information to the console window:

<?xml version="1.0" encoding="utf-16"?>
<DataBucket xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <Id>b3a14833-7fbc-4e09-86b0-0d878055c1e9</Id>
  <Value>ee77b2ea4c664ec798e67ce74fa9eb9f</Value>
</DataBucket>

The XmlSerializer uses a fair amount of reflection to figure out what data is in a
given object to perform the necessary serialization operations on it. Because it’s possi-
ble to write code that uses Serialize() and Deserialize(), but isn’t executed when
the application runs, XmlSerializer defers the creation of the serialization logic until
it’s needed.

 This approach has two advantages. The first is easy to see: you perform a lazy com-
putation for serialization, which is nice if the serialization never occurs. The second
may not be so easy to see (though because you’ve read chapter 2 you probably know
what it is!). It’s the ability to persist and reuse dynamic logic for future usage.  Finding
out all the information about an object via its metadata takes time—remember, reflec-
tion is slower than comparable compiled code. Furthermore, once you figure out what
needs to be serialized in an object, that logic won’t change for the lifetime of the appli-
cation because the type definition won’t change. XmlSerializer uses Reflection.Emit
to generate an assembly at runtime that contains all the serialization logic necessary for
a given object.

 This is another use for Reflection.Emit. If you’re writing code that uses reflection,
it’s fairly common to run into the case where you’re performing logic based on a
given type or assembly. By using some Emitter API magic (as you’ll see in section 5.5),
you can compile your logic into executable code that you can cache. As you’ll see in
section 5.5.3, this technique can yield substantial performance benefits.

5.1.3 Using .NET functionality not supported in your language

Most .NET developers are familiar with exceptions handlers. In the following code
snippet, the code in the catch block will run if any code in the try block throws a
NotImplementedException:

try
{
  // logic goes here...
}
catch(NotImplementedException)
{
  // Exception handling logic goes here...
}

You can also use a finally block, which will always run no matter what goes on in the
try block:
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try
{
  // logic goes here...
}
finally
{
  // Clean-up logic usually goes here...
}

NOTE This is what the using statement turns your code into, more or less.
Dispose() is called on the object in the using statement within the finally
block, which guarantees that Dispose() will be called.

However, did you know there’s another kind of handler block in .NET that C# and VB
don’t expose? It’s called the fault block, and, if it were in C#, it might look something
like this:

try
{
  // logic goes here...
}
fault
{
  // Exception handling logic goes here before it's rethrown...
}

Code within a fault block will execute only if an exception is thrown in the try block.
Then the exception is rethrown. This would come in handy with transactions as you
call a Rollback() method in the fault block—but alas, the fault keyword isn’t
exposed in C# or VB.

 With the Emitter classes, you could easily write code that will wrap code in a
try…fault block, because Reflection.Emit supports all of the functionality that .NET
allows, not the stuff that you see in your favorite .NET language. Other esoteric func-
tionalities are possible at the IL level, such as:

■ Calling overloaded methods that differ only by their return types
■ Throwing exceptions that don’t inherit from the Exception class
■ Creating method calls known as tail calls, which eliminate the stack before

calling a method (quite handy for preventing stack overflows in recursive
call scenarios)

Granted, the need to use some of these additional features is rare (or nonexistent),
but it’s nice to know that you have the full power of .NET available to you via the Emit-
ter classes. If you want to know everything that’s available within .NET, you can find a
set of.

NOTE There’s an exception-specific CLR feature that VB supports but C#
doesn’t. It’s called the filter block, and it’s like a catch block with an addi-
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tional Boolean expression. If that expression evaluates to true, the code in the
block executes; otherwise, the exception continues unwinding the stack. This
simple feature makes VB a bit more expressive with respect to exception han-
dling than C#.

Now that you’ve seen a couple scenarios where dynamic code is desirable, let’s go
through a brief description of how code is transformed into an assembly, and what
this transformation looks like behind the scenes.

5.2 An overview of assembly internals
Before you can start manipulating opcodes, understanding how assemblies are struc-
tured is essential. This information will make creating dynamic assemblies easier to
understand. Let’s start by looking at what happens when you compile your code.

5.2.1 Transforming high-level languages

When you compile your programs, the compiler transforms your code into a format
that the CLR can understand. This format is somewhat dense and harder to under-
stand than what you use with a higher-level language like C#, so we’ll spend some time
examining the details slowly.

 Let’s start with the simple example shown in the following listing. This code cre-
ates a random number that’s retrieved by using the lazy-loading class, Lazy<T>. The
number is then shown to the user via the console window.

using System;

namespace LazyIntegers
{
  internal static class Program
  {
    private static void Main(string[] args)
    {
      var lazyInteger = new Lazy<int>(() =>
      {
        return new Random().Next();
      });

      Console.Out.WriteLine(lazyInteger.Value);
    }
  }
}

When you compile this code, the compiler transforms it into an assembly. An assembly is a
file that contains all the contents you give the compiler, like classes and resource files.
The code in listing 5.1 is intended to be a console application, so you’ll get an executable
(EXE) file, like LazyIntegers.exe, when compilation is complete. If you were creating a

Listing 5.1 Lazy-loading a random number
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class library, the compiler would create a dynamic link library (DLL). Both of these files
are in the format of a portable executable (PE) file, but for your purposes it’s sufficient to
know that the compiler produces a file that the CLR can take and execute. 

 If you saw the code snippet in listing 5.1 online, figuring out what it did would be
pretty easy. The following listing shows code that does the same thing as the Main()
method in listing 5.1, but it’s in the format that’s stored in the assembly once the com-
piler has done its job.

.method private hidebysig static void Main(string[] args) cil managed
{
  .entrypoint
  .maxstack  3
  .locals init ([0] class 
    [mscorlib]System.Lazy`1<int32> lazyInteger)
  IL_0000:  ldsfld     class [mscorlib]System.Func`1<int32> 
    LazyIntegers.Program::'CS$<>9__CachedAnonymousMethodDelegate1'
  IL_0005:  brtrue.s   IL_0018
  IL_0007:  ldnull
  IL_0008:  ldftn      int32 LazyIntegers.Program::'<Main>b__0'()
  IL_000e:  newobj     instance void class 
    [mscorlib]System.Func`1<int32>::.ctor(object, native int)
  IL_0013:  stsfld     class [mscorlib]System.Func`1<int32> 
    LazyIntegers.Program::'CS$<>9__CachedAnonymousMethodDelegate1'
  IL_0018:  ldsfld     class [mscorlib]System.Func`1<int32> 
    LazyIntegers.Program::'CS$<>9__CachedAnonymousMethodDelegate1'
  IL_001d:  newobj     instance void class 
    [mscorlib]System.Lazy`1<int32>::.ctor(class  
      [mscorlib]System.Func`1<!0>)
  IL_0022:  stloc.0
  IL_0023:  call       class [mscorlib]System.IO.TextWriter 
    [mscorlib]System.Console::get_Out()
  IL_0028:  ldloc.0
  IL_0029:  callvirt   instance !0 class 
    [mscorlib]System.Lazy`1<int32>::get_Value()
  IL_002e:  callvirt   instance void 
    [mscorlib]System.IO.TextWriter::WriteLine(int32)
  IL_0033:  ret
}

This format comes from the Intermediate Language Disassembler tool, or ILDasm.
This is a .NET framework tool that lets you see all of the internal parts and figures of
an assembly. You can run it from the Visual Studio command prompt by typing ildasm.
Figure 5.2 shows what ILDasm looks like when the console application is loaded that
contains the code from listing 5.1.

NOTE Depending on how you have your environment set up, you may not have
the correct path information such that typing ildasm at the command line works.
VS installs the Visual Studio command prompt tool, which you can find in the
Visual Studio Tools folder. Run this batch file, and you’ll be able to use ILDasm.

Listing 5.2 C# code transformed into the .NET assembly format
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To load an assembly in ILDasm, you use the File > Open menu option. You can drill
into any member of the assembly and inspect its contents. Figure 5.3 is the code win-
dow that’s shown when you double-click the Main() method.

 If you’ve never seen .NET-level assembly code, trying to figure out what’s going on
can be confusing the first time you encounter it. This is the intermediate language of
.NET. Every language must transform its syntax into this format if it wants to have its
code execute on the CLR. It may look like assembly code, but it’s not quite that power-
ful. It’s a layer between higher-level languages and assembly code. The CLR under-
stands this language and converts it into assembly code for the target processor.

 Even after you’ve spent some time trying to understand this format, it can still
throw you for a loop or two (which, after all, is why we as .NET developers don’t

Figure 5.2 An assembly opened in ILDasm. You 
can see the contents of the assembly in a tree 
view format.

Figure 5.3 Code in ILDasm. This is the 
code behind the Main() method.
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often—if ever—program program in this format). But this base language of .NET isn’t
too hard to comprehend once you understand the structure of .NET assemblies. Fur-
thermore, having this foundational knowledge is crucial in understanding and apply-
ing the concepts in later chapters. 

5.2.2 Member layouts in assemblies and keywords

Let’s focus on the first line of code from listing 5.2. For now, we won’t spend time on
those lines that start with IL. That’s the method implementation—what you’re seeing
are the opcodes. We’ll come back to opcodes in section 5.3; right now we’re more
interested in member definitions and assembly layouts.

 Most of this first line is fairly easy to interpret. The first piece is .method, which
defines that the content within the curly braces is a method. As you can imagine, you
can have members scoped within other members. The next listing shows that this
method is a member of the Program class. Any time you encounter something with a
dot in front of it, it’s called a directive. There are many other directives, and most map
to members you’re familiar with in .NET, such as .assembly, .field, and .event.

.class private abstract auto ansi sealed beforefieldinit 
  LazyIntegers.Program
  extends [mscorlib]System.Object
{
  .method private hidebysig static void Main(string[] args) cil managed
  {
    // ...
  }
}

You can also see other keywords within the method definition. For example, private
defines the visibility of the method, and static specifies that the method is defined
on the class (it’s not an instance method). Some of the other ones may not be so obvi-
ous with their mapping to the original C# code, such as managed and hidebysig. Fur-
thermore, some of the combinations may even seem contradictory. In the case of the
class definition of LazyIntegers.Program, the keywords abstract and sealed are
used at the same time. How, you may wonder, can a class be both at the same time?

NOTE The reason ILDasm shows the class name as LazyIntegers.Program is
because that is the class name. C# and VB allows you to split the full class
name into a namespace and a class name. You can also reference namespaces
via the using (C#) or Imports (VB) keywords, but that’s all syntactic sugar
and organizational aids over what is the true name of the class.

There are many more directives and keywords you can use than we have time to cover
in this book. How can you determine all the keywords you could possibly run into
when you look at .NET code in this format? Fortunately, a number of specification docu-
ments, called the Partition documents, contain detailed information about .NET. You

Listing 5.3 Scoping the Main() method in the Program class

http://mng.bz/qu5U
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can always reference those documents in case you run into a directive or a keyword
you’ve never seen before. You can find them at http://mng.bz/qu5U. We refer to the
ECMA standards documents from time to time to clarify certain concepts, so we
strongly recommend downloading them. Perusing their contents to see what can go
on within a .NET assembly is also educational.

So far, you’ve seen how the contents of an assembly are laid out. Now let’s focus in on
the opcodes and how they work.

5.3 A lightning tour of opcodes
Listing 5.2 showed the implementation of a method in IL form. At that point, the dis-
cussion focused on metadata and directives; the implementation was deferred
because explaining those details at that time wasn’t necessary. Now it’s time to cover
that information. To be proficient with metaprogramming using Reflection.Emit, you
must first understand opcodes, as they’re part of virtually every method call you’ll
make with that API. This section gives you a summary of how opcodes are named and
the various functions you can do with them. In the next section, you’ll use this new-
found knowledge as you work with Reflection.Emit. 

5.3.1 The mnemonic patterns for opcodes

For developers to see similarities between opcodes in IL and assembly language
instructions isn’t uncommon. In some ways, this comparison is valid. They’re both
terse and not as friendly to use as a higher-level language is.  However, writing code in
IL doesn’t mean your code will execute any faster than what the C# compiler will pro-
duce. That’s why you don’t see inline IL as an option in C# or VB—because there’s
really no value-added in allowing a developer access to opcodes in a method. But as
we’ve stated before, emitting code via Reflection.Emit means you need to understand
opcodes. As it turns out, it’s not too hard to see what the opcodes are doing. Here’s a
line of code from listing 5.2:

IL_0022:  stloc.0 

Keyword definitions 
If you’re curious, managed means that the method contains IL opcodes only (which is
different from a P/Invoke method). 

hidebysig defines how the method “hides” other methods from a base class
and itself. 

Program is defined as both sealed and abstract because it’s a C# static class. 

There’s no notion of a static class at the CLR level, but you can make a class both
sealed (you can’t inherit from it) and abstract (you can never create an instance
of it).

http://mng.bz/qu5U
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All the opcodes have a mnemonic pattern to them. If the opcode name starts with st,
it means store. loc means local. Therefore, this opcode stores a local value. The .0
determines where a value will be stored—we cover that in the next section.

 Table 5.1 contains a list of common patterns you’ll see in opcodes. The list isn’t
complete, but it will help you in deciphering most of the opcodes you’ll see.

Some opcodes, like castclass, are fairly easy to read and don’t require a lot of trans-
lation. You can easily guess that this casts an object to a specified type. Other opcodes
may not seem so obvious, like conv.ovf.i4. But by looking at table 5.1, you know that
the opcode has something to do with converting a value with overflow detection. We
discuss what the i4 part means in a bit.

 Whether or not a name is easy to understand at first glance, we strongly recom-
mend you have the third Partition document handy as you dive into the opcode
names. It covers all the details about every opcode available in .NET. For now, let’s
cover the opcodes you’ll probably use heavily in Emitter-based code.

NOTE Those IL_statements are labels generated by ILDasm. The names have
no formatting requirements, nor do you need to use them all the time. The
only opcodes that need them are opcodes that relocate the control flow to a
new opcode. The format ILDasm uses to generate labels is to specify how far
in the opcode stream you are via a hexadecimal value. Therefore, IL_0022
means you’re currently at the 34th byte in the method. This is good to know

Table 5.1 Common mnemonic phrases used in opcodes

Mnemonic Meaning

ld Load a value.

ldc Load a constant value.

st Store a value.

loc Do something with a local value.

br Break to a specified point in a method.

arg Reference an argument.

loc Use a local variable.

ovf Overflow detection.

conv Perform a conversion.

elem Use an element in an array.

fld Use a field.

call Call a method.
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when you’re doing branching because you can use special opcodes to mini-
mize the size of the method. We cover branching and how labels are used in
more detail in section 5.3.6.

5.3.2 Using local variables
Before we continue, let’s rewrite the code you saw in listing 5.2 to something that’s a
little friendlier to read. The C# compiler has to create some nasty names for anony-
mous members, so this listing is a cleaner version for you to use.

.method private hidebysig static void Main(string[] args) cil managed
{
  .entrypoint
  .maxstack 3
  .locals init (
    [0] class [mscorlib]System.Lazy`1<int32> lazyInteger)

  ldnull
  ldftn int32 
    LazyIntegersInIL.Program::LazyIntegerValueFactory()
  newobj instance void class 
    [mscorlib]System.Func`1<int32>::.ctor(object, native int)
  stsfld class [mscorlib]System.Func`1<int32> 
    LazyIntegersInIL.Program::LazyIntegerValueFactoryDelegate

  ldsfld class [mscorlib]System.Func`1<int32> 
    LazyIntegersInIL.Program::LazyIntegerValueFactoryDelegate
  newobj instance void class 
    [mscorlib]System.Lazy`1<int32>::.ctor(
  class [mscorlib]System.Func`1<!0>)
  stloc.0

  call class [mscorlib]System.IO.TextWriter 
    [mscorlib]System.Console::get_Out()
  ldloc.0
  callvirt instance !0 class 
    [mscorlib]System.Lazy`1<int32>::get_Value()
  callvirt instance void 
    [mscorlib]System.IO.TextWriter::WriteLine(int32)
  ret
}

If you want to create a local variable in your method, you need to do two things. First,
you declare them via the .locals directive:

.locals init (
  [0] class [mscorlib]System.Lazy`1<int32> lazyInteger)

In this case, a local variable named lazyInteger is used, which is of type Lazy<int>.
Note that this local variable is in slot 0. You don’t have to specify the slot location (via
the [0] syntax) if you don’t want to; the compiler will put the variable in the next
available slot if you don’t say where it should go. You can reference variables either by
slot location or name. Using variables requires the ldloc and stloc opcodes:

Listing 5.4 A cleaner version of the Main() method from listing 5.2
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stloc.0
call class [mscorlib]System.IO.TextWriter 
  [mscorlib]System.Console::get_Out()ldloc.0

Remember that we said in the last section that we’d address those .0 parts of the
opcodes? Those mean that you want to store a value in the 0th local variable or fetch
one from that location. You could also use a variable name to load and store values:

stloc lazyInteger
call class [mscorlib]System.IO.TextWriter 
  [mscorlib]System.Console::get_Out()ldloc lazyInteger

At this point, you may be wondering where these values go. IL is a stack-based lan-
guage, which means you push and pop values on a stack. Therefore, if you issue the
ldloc.0 instruction, the runtime takes the 0th local variable and pushes it onto the stack.
Using stloc.0 would pop that value and store it back into the 0th local variable.

 Here’s a simple example using the stack with some other “loading” opcodes. Push two
values on the stack, a double and a long, and then pop the value into a local variable:

.locals init (
  [0] class [mscorlib]System.Int64 value)
ldc.r8 35.5
ldc.i8 234
stloc.0

Figure 5.4 shows what the stack looks after the second value
is pushed to the stack, then what’s left on the stack after
stloc.0 executes. Leaving that last value on the stack is
something you shouldn’t do because it’s an IL rule that you
can’t leave a method with something still on the stack. It’s
extremely important to keep track of what’s on the stack as
you define methods with opcodes. It’s quite easy to acciden-
tally misuse the stack with disastrous results—another good
reason for not exposing inline IL in C# or VB.

NOTE We talk about a tool you can use to uncover opcode mistakes in sec-
tion 5.4.3.

5.3.3 Accessing fields

In listing 5.4, you can see that an anonymous method is passed into the constructor for
Lazy<int>. The C# compiler ends up creating a method with a complicated name to
store that method’s implementation, which is called LazyIntegerValueFactory in listing
5.1. That method is turned into a delegate (which is eventually passed into Lazy<int>),
and that delegate is stored in a field. To create a field, use the .field directive:

.field private static class 
  [mscorlib]System.Func`1<int32> LazyIntegerValueFactoryDelegate

Depending on its accessibility and access needs, you’ll use keywords like private and
static. To use the field, you use the ldfld, ldsfld, stfld, and stsfld opcodes:

Figure 5.4 Using the IL 
stack. After storing the long 
value into the variable, one 
double value remains on 
the stack.
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stsfld class [mscorlib]System.Func`1<int32> 
  LazyIntegersInIL.Program::LazyIntegerValueFactoryDelegate

ldsfld class [mscorlib]System.Func`1<int32> 
  LazyIntegersInIL.Program::LazyIntegerValueFactoryDelegate

The extra s in two of the opcodes (ldsfld and stsfld) means you’re trying to use a
static field. If you were using an instance-level field, you’d use ldfld and stfld. Note
that with instance fields, you need to have the object that has the field on the stack—
you’ll see how to create objects in the next section.

5.3.4 Creating objects

To create your Lazy<int> with a factory method, you need to call a constructor on the
class. You do that with the newobj opcode:

ldnull
ldftn int32 
  LazyIntegersInIL.Program::LazyIntegerValueFactory()
newobj instance void class 
  [mscorlib]System.Func`1<int32>::.ctor(object, native int)

Remember, when you’re using IL, you’re pushing and popping values on a stack. To
call any method in IL, the first thing you have to do is push all the values onto the
stack that will be passed into the target method (in this case, a constructor). Things
look a little odd. You’re passing in a method—why do you need to pass in an object
and a native int? To make a long story short, when you’re working with delegates,
you need to provide the object that the target method is defined on and a function
pointer to the delegate. In your case, your method is static, so you have no object to
reference when you need to call it. Therefore, the first thing you do is push a null
value onto the stack with ldnull. Then, you get the function pointer via ldftn.
Finally, you can create your Lazy<int> via newobj. 

 To summarize, you need to do two things when you create an object:

■ Push the argument values on the stack in the order that the constructor
needs them.

■ Use newobj to call the constructor.

When newobj is done, all the argument values are popped off the stack, and the new
object is on the stack. That’s why stsfld was called to store the new Lazy<int> into
your static field.

5.3.5 Calling methods

Now that you know how to create an object, understanding how to call a method
should be fairly easy. To be sure, there are some differences, but the process is the
same: push the argument values on the stack and call the method:

ldloc.0
callvirt instance !0 class 
  [mscorlib]System.Lazy`1<int32>::get_Value()
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Wait, you might say. Why is the Lazy<int> local variable (the 0th one) pushed on the
stack to call get_Value(), which takes no arguments? And the C# code that generated
this IL used a Value property, not get_Value(), so where did this method come from?
And what’s with that strange-looking !0 syntax? So many questions!

 Let’s start with the first question. When you call an instance method, the CLR
needs to know which object you’re targeting to call the method on. That’s why you
push the target object onto the stack first. Every instance method takes an object ref-
erence as its first argument that specifies the target. You don’t see this in languages
like C# or VB (nor do you see it in the method definition in IL either), but it’s there.
If you were calling a static method, you wouldn’t push an object on the stack first
because there’s no need to specify a target with a static method.

 The next issue is get_Value(). Properties in C# and VB are syntactic sugar around
method calls. The C# compiler generates get_[PropertyName] and  set_[Property-
Name] methods for the getters and setters of a property. Therefore, when you use a
property, you’re really calling its methods, and that’s why you see a call to get_Value() in
the IL in this example.

 Finally, the !0 text. Whenever you call a method in IL, you must include the return
type in the signature of the method. This is probably different from most languages
you’ve used because you don’t explicitly provide the return type. But that’s the way it
is in IL. What’s interesting about this rule is that you can overload methods based on a
difference in return type alone—mentioned in section 5.1.3. With most methods,
you’d provide the type name for the return value, like [mscorlib]::System.Int32.
But Lazy<T> is a generic, and get_Value() returns a type of T. To specify that type, you
use the !n syntax, where the n value is equal to the position of the generic type parame-
ter in the type or method declaration. In this case, there’s only one generic type dec-
laration, T, so that’s why 0 was used. 

 There are a couple of method invocation opcodes you should be aware of. In the
example, you’re using callvirt because you’re calling a virtual method. You use the call
opcode if you’re calling a nonvirtual or static method. There’s also calli, which
allows you to call functions when you have a function pointer. calli is used with dele-
gates or native method (a P/Invoke).

NOTE You can call a virtual method with call if you want. Reference sec-
tions 3.19 and 4.2 of Partition III (http://mng.bz/qu5U) for details on when
call and callvirt can and should be used.

5.3.6 Controlling code flow

There aren’t any if or while statements in the code from listing 5.2, but these control
flow keywords are common in most languages. Branching is supported in IL via the
break opcodes. For example, if you wanted to break to a label in a method based on
whether the first argument was null, you’d do this:

ldarg.1
brtrue ArgumentWasNotNull

http://mng.bz/qu5U
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// More IL goes here...
ArgumentWasNotNull: // ...

Like traditional assembly languages, IL also lets you branch based on the results of
value comparisons. The following code snippet will break to the label if the first argu-
ment is greater than the second:

ldarg.1
ldarg.2
bge OneIsBiggerThanTwo:
// More IL code goes here...
OneIsBiggerThanTwo: // ...

A bunch of these control flow opcodes are available—we encourage you to visit sec-
tion 3 in Partition III to learn more about these opcodes.

5.3.7 Exception handling

If you need to handle exceptions, you can do so in IL with a syntax that looks similar
to what you’d see in C#. Here’s how you’d catch a DivideByZeroException in IL with
a finally block:

.try
{
  .try
  {
    // Math code goes here...
  }
  catch [mscorlib]System.DivideByZeroException 
  {
    // Exception handling code goes here...
  }
}
finally
{
  // Finally handling code goes here...
}

It may surprise you to learn that you can’t add a finally block directly to a try-catch
block. That doesn’t work in IL. You need to wrap the try-catch with a try-finally.
Other than that, the rules you’re used to in C# or VB work here as well—for example,
you can have multiple catch blocks with a try block.

 You can also catch types that don’t derive from the Exception type. Because the
CLR has to support executing code from languages that were written with the abil-
ity catch any type (like C++), in IL it’s possible to write a catch block that catches a
string or a Guid. But you don’t want to do that unless you’re writing a compiler
for C++ to target .NET. Catching types that don’t derive from Exception isn’t CLS-
compliant code.

NOTE CLS stands for Common Language Specification, which defines a basic
set of features that all .NET languages must support. You can find more infor-
mation at http://mng.bz/nz4x.

http://mng.bz/nz4x
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This concludes our lightning tour of IL. You can do a lot more in IL than what we had
time for in this section, but this introduction is sufficient for now. Let’s move from
understanding what IL is to using it to generate dynamic code at runtime.

5.4 Creating dynamic assemblies
Now that you’ve had a brief dive into the world of opcodes, you’re ready to tackle
Reflection.Emit. By the end of this section, you’ll know how to create a dynamic
assembly. We revisit the ToString()example from section 2.4.2 and implement it with
the Reflection.Emit API so you can see how it all works.

5.4.1 Building a dynamic version of ToString()

This section goes over the common tasks you’ll use whenever you create dynamic
code with Reflection.Emit. This boils down to three steps:

■ Create an assembly.
■ Create one or more types.
■ Implement one or more methods on that type.

Let’s break down each part into the necessary details.

CREATING THE ASSEMBLY

The first building block you need is a dynamic assembly. Technically, this means you
need to create two things: an assembly and a module. Modules aren’t talked about all
that much in .NET, but they’re important when emitting code using Reflection.Emit.
Each assembly contains one or more modules, and the modules are what you use to
build your types. It’s possible to create multimodule assemblies, but we’ll stick to the
“one module per assembly” approach for simplicity’s sake.

 Anyway, let’s see some code. The following listing demonstrates what you need to
do to get started in Reflection.Emit by creating an assembly and a module. This code
is contained in a class called ReflectionEmitMethodGenerator—later on, you’ll see
how to call this from a ToString() method. There’s a lot to this class, so we’ll go over
it in small chunks, starting with the constructor that creates the dynamic assembly.

public sealed class ReflectionEmitMethodGenerator
{
  private AssemblyBuilder Assembly { get; set; }
  private ModuleBuilder Module { get; set; }
  private AssemblyName Name { get; set; }

  public ReflectionEmitMethodGenerator()
    : base() 
  {
    this.Name = new AssemblyName()               
    {                                                 
      Name = Guid.NewGuid().ToString("N")             
    };                                                

Listing 5.5 Creating a dynamic assembly and module

Define 
assembly 
name

 b
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a

    this.Assembly = AppDomain.CurrentDomain.DefineDynamicAssembly( 
      this.Name, AssemblyBuilderAccess.Run);                       
    this.Module = this.Assembly.DefineDynamicModule(  
      this.Name.Name);                                  

First, you define a name for the assembly with the AssemblyName class B. Next, you
create a new AssemblyBuilder object with this name via DefineDynamicAssembly()
on an AppDomain object c—we’ll stick with the default one in the example. Finally,
you create your dynamic ModuleBuilder object by calling DefineDynamicModule() d.
As mentioned in section 2.2.1, there are a number of overloads in the reflection
world, and this holds true in the Reflection.Emit namespace as well. Feel free to
explore the method options available to you.

 You should also note that there a number of values for AssemblyBuilderAccess,
like RunAndSave, Save, and so on. Using Run means the assembly will exist only in
memory and won’t be persisted to disk. That suits your needs for now; in section 5.4.3
you’ll see where having the ability to save the assembly to disk lets you perform verifi-
cation operations. 

CREATING THE TYPE

In the following code snippet, you can see how a dynamic type is created by calling
DefineType() on our ModuleBuilder—this gives you a TypeBuilder. This Generate<T>
method exists in the ReflectionEmitMethodGenerator class so it has access to all the
fields defined in listing 5.5

  public Func<T, string> Generate<T>()
  {
    var target = typeof(T);
    var type = this.Module.DefineType(
      target.Namespace + "." + target.Name);

If you haven’t picked up on the pattern yet, all the Emitter classes end with the word
Builder. This reinforces the notion that you’re building code on the fly.

ADDING OPCODES

Finally, you arrive at the code that creates and implements the dynamic ToString()
method. The first thing you have to do is create a method, shown in the next code
snippet. This code, which is a continuation of the method from the previous code snip-
pet, calls DefineMethod() on your TypeBuilder, specifying its argument types and visi-
bility as arguments:

    var method = type.DefineMethod(methodName,
      MethodAttributes.Static | MethodAttributes.Public, 
      typeof(string), new Type[] { target });

    method.GetILGenerator().Generate(target);

Your new method is a public, static method that takes one argument (typed as T—the
object that wants a dynamic ToString()implementation) and returns a string.

 Don’t be fooled by that last line of code, though—there’s a lot going on there.
GetILGenerator() returns an ILGenerator, and that’s what you’ll use to define your

Create
dynamic
ssembly

 c

Create dynamic 
module

 d
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method with opcodes. As you can guess, it takes a fair amount of code to implement
on-the-fly methods, so we created an extension method, Generate(), to do this for
you. The following listing shows the implementation of Generate().

internal static void Generate(this ILGenerator @this, Type target)
{
  var properties = target.GetProperties(             
    BindingFlags.Public | BindingFlags.Instance);    

  if(properties.Length > 0)
  {
    var stringBuilderType = typeof(StringBuilder);

    var toStringLocal = @this.DeclareLocal(               
      typeof(StringBuilder));                             

    @this.Emit(OpCodes.Newobj,                             
      stringBuilderType.GetConstructor(Type.EmptyTypes));  
    @this.Emit(OpCodes.Stloc_0);                           
    @this.Emit(OpCodes.Ldloc_0);                           

    var appendMethod = stringBuilderType.GetMethod(        
      "Append", new Type[] { typeof(string) });            
    var toStringMethod = typeof(StringBuilder).GetMethod( 
      "ToString", Type.EmptyTypes);                       

    for(var i = 0; i < properties.Length; i++)            
    {                                                     
      ToStringILGenerator.CreatePropertyForToString(      
        @this, properties[i], appendMethod,               
        i < properties.Length - 1);                       
    }

    @this.Emit(OpCodes.Pop);                        
    @this.Emit(OpCodes.Ldloc_0);                       
    @this.Emit(OpCodes.Callvirt, toStringMethod);      
  }
  else
  {
    @this.Emit(OpCodes.Ldstr, string.Empty);
  }

  @this.Emit(OpCodes.Ret);
}

As before, you need to get a list of public properties on the target object B. If there are
any, you create a local StringBuilder variable via DeclareLocal() c. Then you create a
new StringBuilder via newobj and store that with stloc.0 d. Every time you want to
add an opcode to your method, you call Emit(). It has a bunch of overloads to let you
specify certain values, such as which constructor you want to call on StringBuilder.

 Next, you get a reference to the Append() method on StringBuilder. This
MethodInfo object e is used every time you want to specify a call to Append() in the
IL stream. That’s handled in CreatePropertyForToString()—we’ll come back to this

Listing 5.6 Using ILGenerate to emit code
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method. Once you’ve created all the code to print the properties and their values f,
you clear the stack via the pop opcode. Finally, you load the local StringBuilder, call
ToString()on that, and return with a ret opcode g.

 The following listing shows how the property information is added to the
dynamic method.

private static void CreatePropertyForToString(ILGenerator generator, 
  PropertyInfo property, MethodInfo appendMethod, 
  bool needsSeparator)
{
  if(property.CanRead)
  {
    generator.Emit(OpCodes.Ldstr, property.Name + ": "); 
    generator.Emit(OpCodes.Callvirt, appendMethod);  
    generator.Emit(OpCodes.Ldarg_0);                  

    var propertyGet = property.GetGetMethod();

    generator.Emit(propertyGet.IsVirtual ?           
      OpCodes.Callvirt : OpCodes.Call,               
      propertyGet);                                  

    var appendTyped = typeof(StringBuilder).GetMethod("Append",
      new Type[] { propertyGet.ReturnType });

    if(appendTyped.GetParameters()[0].ParameterType !=       
      propertyGet.ReturnType)                                
    {                                                        
      if(propertyGet.ReturnType.IsValueType)                 
      {                                                      
        generator.Emit(OpCodes.Box, propertyGet.ReturnType); 
      }                                                      
    }                                                        
                                                             
    generator.Emit(OpCodes.Callvirt, appendTyped);           

    if(needsSeparator)                                      
    {                                                       
      generator.Emit(OpCodes.Ldstr, Constants.Separator);   
      generator.Emit(OpCodes.Callvirt, appendMethod);       
    }                                                       
  }
}

For each readable property, you get its name and put that on the stack via ldstr B.
Then you append it to the StringBuilder by invoking Append()—this is what the
callvirt opcode is for c. Now you need to get the property’s value. Recall that if you
ever call a method on an object, you need to push the object on the stack first—that’s
what ldarg.0 does d. Then you either invoke the getter via a callvirt or call
opcode depending on whether the method is virtual or not e. Now you put the prop-
erty’s value in the StringBuilder. Figure out what the best Append() overload match
is for the property’s type (emitting a box opcode if the property is a value type) and

Listing 5.7 Adding property information to a dynamic method

Get property 
name

 b

Append 
property 
name

 c

Load object 
reference d

Call getter 
correctly

 e

Add 
property 
value

 f

Add value 
separator

 g



159Creating dynamic assemblies
use callvirt on that specific Append() call f. If you need to add a double-pipe sepa-
rator between one property value and the next property name, you emit two opcodes:
ldstr and callvirt g.

INVOKING THE NEW METHOD

Now that the method implementation is done, you need to “bake” the TypeBuilder to
make it a full-fledged type and then get the method you created off the new type. The
following code snippet (which finishes the class definition from listing 5.3 and the code
snippets in the “Creating a type” and “Adding opcodes” subsections in section 5.4.1)
shows how you do this:

    var createdType = type.CreateType();

    var createdMethod = createdType.GetMethod(methodName);
    return (Func<T, string>)Delegate.CreateDelegate(
      typeof(Func<T, string>), createdMethod);
  }
}

You call CreateType() and then find the method with the familiar GetMethod() call.
The last line of code may seem a bit odd—what’s this Delegate.CreateDelegate()
call for? That allows you to use the method you created as a Func<T, string>, which is
somewhat easier than trying to use a MethodInfo. Furthermore, it gives you an easy
way to cache the method for future invocations. The following listing closes out the
discussion by showing the extension method that creates the dynamic code and
caches the resulting Func<T, string>.

public static class ToStringViaReflectionEmitExtensions
{
  private static Lazy<ReflectionEmitMethodGenerator> generator =
    new Lazy<ReflectionEmitMethodGenerator>();
  private static Dictionary<Type, Delegate> methods =
    new Dictionary<Type, Delegate>();

  internal static string ToStringReflectionEmit<T>(this T @this)
  {
    var targetType = @this.GetType();

    if(!ToStringViaReflectionEmitExtensions.methods.ContainsKey(
      targetType))
    {
      ToStringViaReflectionEmitExtensions.methods.Add(
        targetType,
        ToStringViaReflectionEmitExtensions.generator
          .Value.Generate<T>());
    }

    return (ToStringViaReflectionEmitExtensions.methods[
      targetType] as Func<T, string>)(@this);
  }
} 

Listing 5.8 Extension method to create the dynamic method



160 CHAPTER 5 Generating code with Reflection.Emit
At this point, everything is in place. To implement the ToString() method  dynami-
cally, all you need to do is this:

public override string ToString()
{
  return this.ToStringReflectionEmit();
}

That’s it! You’ve created dynamic code on the fly that’s adaptive to any object’s struc-
ture. Although it’s not a trivial amount of code to write, once you have it in place, all it
takes is one method call to create a rich yet terse description of any object with code
that will execute quickly.

 Living this close to the CLR metal has its pitfalls. It’s easy to create incorrect code
that will fail in bizarre ways or cause an exception to be thrown. Let’s see how you can
debug your code so you can handle the first pitfall. 

5.4.2 Adding debugging support
One nice feature about Reflection.Emit is that it can create debugging information on
the fly, allowing you to step into the debugger and see how your dynamic code is working.
The code samples for this book have a modified version of ReflectionEmitMethod-
Generator called ReflectionEmitWithDebuggingMethodGenerator—the only difference
between these two classes is how debugging is enabled in the second one. Let’s focus on
these differences so you can see what it takes to create the necessary debugging data.

 The first thing to do is add an attribute to your dynamic assembly so the CLR knows
that your assembly has been created with debugging symbols. The following listing
contains this attribute code—it creates a DebuggableAttribute with the necessary val-
ues and adds it to the new assembly.

private void AddDebuggingAttribute(AssemblyBuilder assembly)
{
  var debugAttribute = typeof(DebuggableAttribute);
  var debugConstructor = debugAttribute.GetConstructor(
    new Type[] { typeof(DebuggableAttribute.DebuggingModes) });
  var debugBuilder = new CustomAttributeBuilder(
    debugConstructor, new object[] { 
      DebuggableAttribute.DebuggingModes.DisableOptimizations | 
      DebuggableAttribute.DebuggingModes.Default });
  assembly.SetCustomAttribute(debugBuilder);
}

NOTE You can learn more about the technical reasons why you need this
attribute at http://mng.bz/18Q7 and http://mng.bz/aSg7.

Now you need to create your module such that it’ll create debugging information.
This is as simple as calling a different version of DefineDynamicModule():

this.Module = this.Assembly.DefineDynamicModule(
  this.Name.Name + ".dll", true);

Listing 5.9 Adding a debugging attribute to your dynamic assembly

http://mng.bz/18Q7
http://mng.bz/aSg7
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The key part is the second parameter, which is a Boolean value. By passing in true,
you’re telling the ModuleBuilder to emit symbol information.

 Next, tell the ModuleBuilder of the files you’ll use to associate debug symbol infor-
mation for. These files are code files, like .cs files. Unfortunately, there’s nothing in
Reflection.Emit that will create an .il file for you that matches the opcodes you emit,
so you have to handle this manually. That’s not as hard as it seems—you’ll see how to
do it on the fly shortly. For now, here’s how you create that dynamic document:

var fileName = target.Name + "ToString.il";
var document = this.Module.DefineDocument(fileName,
  SymDocumentType.Text, SymLanguageType.ILAssembly, 
  SymLanguageVendor.Microsoft);

This doesn’t create the file; you’re making your module aware that you’re going to use
this file for debugging. The three enumeration values have different options depend-
ing on the code you’ve created, or you call an overload of DefineDocument() that
takes the filename if you don’t care about these options.

 Now comes the fun part. You need to align specific areas within a code file with the
opcodes you emit in your method. In this example, you create that file and pass it into
the helper Generate() method:

using(var file = File.CreateText(fileName))
{
  method.GetILGenerator().Generate(target, document, file);
} 

There are three things that you can do with methods and debugging. The first is you
can add descriptive information to your parameters, like a name. You do that by call-
ing DefineParameter() on your MethodBuilder:

method.DefineParameter(1, ParameterAttributes.In, "target");

The second thing is adding descriptive information to your local variables. Do that by
calling SetLocalSymInfo() on the LocalBuilder you get after calling DeclareLocal():

toStringLocal.SetLocalSymInfo("builder");

The third thing is the interesting part. You can mark points in your code file to match
a corresponding set of opcodes. You do that by calling MarkSequencePoint() on your
ILGenerator. Again, there’s no .il file to speak of when you create code on the fly with
Reflection.Emit, but it’s pretty easy to create a pseudo-.il code file based on the
opcode you’re emitting. The next listing shows an extension method in the sample
code that handles the sequence point details. This extension method is for opcodes
that do something with a string (like ldstr)—the sample code has other extension
methods to handle opcodes that call methods and use types.

internal static void Emit(this ILGenerator @this, 
  OpCode opcode, string value, 

Listing 5.10 Marking sequence points in a dynamic code file
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  ISymbolDocumentWriter document, 
  StreamWriter file, int lineNumber)
{
  var line = opcode.Name + " \"" + value + "\"";
  file.WriteLine(line);
  @this.MarkSequencePoint(document, lineNumber, 
    1, lineNumber, line.Length + 1);
  @this.Emit(opcode, value);
}

You create a line of IL and add it to the text file. Then, you inform the ILGenerator
that a debugger should highlight that new code line for any following opcodes added
by an Emit() call with MarkSequencePoint().

 Once you’ve emitted all your debugging content, you now have the ability to step
into the code you generated to see how it works. Figure 5.5 is a screen shot of Visual
Studio with the new .il file loaded. 

 You can see that the code is highlighted correctly. You can also see that the name
of the argument and the local variable is displayed as well. Being able to debug IL like
this is extremely powerful. The more you use Reflection.Emit, the more you’ll be
thankful that you can do something like this.

 Debugging isn’t the only tool you can use to ensure your code is correct. In the
next section, you’ll see how verification comes in handy with dynamic code.

5.4.3 Verifying results with peverify
It’s one thing to have a logical error in your code, such as incrementing a value
instead of decrementing it. Those can lead to odd errors, but generally they’re not too
hard to track down. What happens if you emit a set of opcodes that leads to a method
implementation that, well, doesn’t make any sense? Let’s say you had the following
two opcodes in a static method that didn’t take any arguments and returned a string:

ldstr "Some value"
ret

That makes sense. A string is pushed onto the stack and then it’s popped off as it
becomes the return value. But what happens if you forget the ldstr opcode? Now all
you have is this:

ret

Figure 5.5 Debugging dynamic code 
in .NET. By creating an IL file on the fly 
with debug information, you can step 
into your newly created code.
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What does your code do in this case? The Emitter classes will happily create a method
like that, but when you try to execute that method, you’ll get an InvalidProgram-
Exception. Sometimes you may get some really strange results, depending on what’s
wrong with the method implementation. No matter what the results are, you’d really
like to know as soon as possible that your code is incorrect.

 There is hope. .NET comes with a tool called peverify.exe that can verify the meta-
data and implementation of the code within an assembly. It’s a command-line tool
that can take in a number of arguments, though you’ll usually stick with two: /md,
which tells peverify to look for metadata errors, and /il, which asks peverify to find
implementation problems. Peverify can’t find logical errors in your code, but it can
find that nasty IL error you saw earlier in this section. Figure 5.6 shows what the results
of peverify look like. You can see that it reports an IL error—here’s the specific text of
the issue: Return value missing on the stack.

 The problem with peverify is that it’s a command-line tool. You can’t reference a
peverify.dll assembly in your code and tell it to verify an assembly you created. But
we’ve created an assembly that executes peverify.exe for you underneath the scenes.
It’s called AssemblyVerifier, and all you need to do is reference this assembly and add
the following lines of code:

assembly.Save(name.Name + ".dll");
AssemblyVerification.Verify(assembly);

You have to save your dynamic assembly to disk for this to work, so you also need to
make sure you define the dynamic assembly with the AssemblyBuilderAccess.RunAnd-
Save value. If peverify finds any issues with your code, AssemblyVerification parses the
console output and transforms the information into a VerificationException, where
you can see all the scific errors in the Errors property.

NOTE You can get AssemblyVerifier via NuGet. To get the source code, visit
http://assemblyverifier.codeplex.com.

Figure 5.6 Using peverify on 
an assembly with errors. Any 
metadata and opcode error will 
show up from its analysis. 

http://assemblyverifier.codeplex.com
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Before we move on to another dynamic code generation option, let’s go over ways to
make using the Emit APIs a bit easier for you.

5.4.4 Using ILDasm to cheat

Unless you write .il files on a day-to-day basis, or you’re deep into the Reflection.Emit
API all the time, using opcodes isn’t going to be high on your skills list. As much as we
love metaprogramming and generating code, emitting opcodes can be tricky, even if
you’re good at it. But you really don’t have to be good at all—you need to know how
to cheat.

 Recall in section 2.4.2 that there was a hard-coded version created of ToString()in
C#. To emulate that code in Reflection.Emit, you can use the tools already at your dis-
posal. First, compile the code as you normally would. Then, load the assembly with
ILDasm and navigate to the code you’d like to reproduce. For example, this is what
some of the IL looks like for the C# version of ToString():

IL_0000:  newobj  instance void 
  [mscorlib]System.Text.StringBuilder::.ctor()
IL_0005:  ldstr "Age: "
IL_000a:  call instance class 
  [mscorlib]System.Text.StringBuilder 
  [mscorlib]System.Text.StringBuilder::Append(string)
IL_000f:  ldarg.0
IL_0010:  call instance int32 Customers.Customer::get_Age()
IL_0015:  callvirt instance class 
  [mscorlib]System.Text.StringBuilder 
  [mscorlib]System.Text.StringBuilder::Append(int32)
IL_001a:  ldstr " || "
IL_001f:  callvirt instance class 
  [mscorlib]System.Text.StringBuilder 
  [mscorlib]System.Text.StringBuilder::Append(string) 

In listings 5.6 and 5.7, you should be able to see the similarities. That’s because we
based our Emit-based code on the IL we saw in ILDasm. It’s much easier to implement
what you want to do in a language like C# or VB. By stealing what the compilers are
already creating for you, you can minimize the amount of time it takes to write verifi-
able dynamic code that works the way you expect it to.

NOTE Sometimes the compiler will emit nop, or no operation, opcodes. This
is usually done by a compiler for debugging purposes when it wants to align
breakpoints in your code. There’s no need for you to reproduce those in
Emit-based code—you can happily ignore them when you following this
cheating technique.

You now know how to create code on the fly with the classes in Reflection.Emit. But
that’s not the only option available. The next section covers another dynamic option
that has certain advantages over Reflection.Emit.
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5.5 Lightweight code generation with dynamic methods
Another IL-based code emitting technique uses a class called DynamicMethod. This
class generates methods for you at runtime. Let’s cover the reasons why you’d use this
over Reflection.Emit and then demonstrate how you’d use it by revisiting the ToString()
example from section 2.4.2 using DynamicMethod.

5.5.1 When creating an assembly is too much

There are two disadvantages to Reflection.Emit when it comes to generating code at
runtime. The first issue is the complexity, or heaviness of the Emit approach. If all you
need is to create a small piece of code, you have to create a dynamic assembly, mod-
ule, and type to create a method. For most of the dynamic code we’ve seen, most only
need a method created, making this approach somewhat cumbersome. Granted,
there are times where you need to generate a complete assembly (or at least a type, as
in the case of creating a dynamic proxy), but otherwise a more lightweight approach
is what you want.

 The other (more concerning) issue is memory pressure. When you create a
dynamic assembly, that assembly is loaded into the domain you created it from, which
is usually the default AppDomain. The problem is that you can’t unload assemblies
directly; the only way to unload an assembly from memory is to call Unload() on the
AppDomain the assembly is in. This is probably something you don’t want to do on your
default AppDomain! You can circumvent this by creating dynamic assemblies in other
AppDomains you create, but that’s not a trivial task. As you create more and more
dynamic assemblies, your memory will grow and grow, and if you’re not careful, you’ll
run into memory issues.

NOTE With 4.0, it’s possible to mark a dynamic assembly as unloadable by
using the AssemblyBuilderAccess.RunAndCollect value when you create the
assembly. This will unload the assembly if needed, which is a big benefit from
a memory pressure perspective. This isn’t a foolproof solution, as you must

Creating dynamic proxies
If you want to explore deeper into what the Emit API can provide, please check out
the DynamicProxies (http://dynamicproxies.codeplex.com) and EmitDebugger (http://
emitdebugger.codeplex.com) projects. EmitDebugger wraps the Emit classes to automati-
cally create an IL file with breakpoints for dynamic code. DynamicProxies create proxy
classes on the fly so you can intercept virtual method calls on a class (visit http://
en.wikipedia.org/wiki/Proxy_pattern for more information on the proxy pattern).

As you can imagine, this isn’t a simple thing to do because you have to be concerned
about a number of issues, such as by-reference arguments, generics, and interface
implementation on a class. 

Note that DynamicProxies uses EmitDebugger to give you the ability to debug your
proxy classes—quite a nice feature to have.

http://dynamicproxies.codeplex.com
http://emitdebugger.codeplex.com
http://emitdebugger.codeplex.com
http://en.wikipedia.org/wiki/Proxy_pattern
http://en.wikipedia.org/wiki/Proxy_pattern
http://mng.bz/mK5M
http://mng.bz/mK5M
http://mng.bz/mK5M
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adhere to a number of restrictions to ensure that the associated memory with
the dynamic assembly is released, although these restrictions probably won’t
affect most of the scenarios you’ll run into as a developer. Visit http://
mng.bz/mK5M for more information on these restrictions.

With a DynamicMethod, you don’t incur the entire API overhead to create dynamic
code. All you have, once DynamicMethod is done, is a method that you can invoke like
any other method (more or less). And the nice thing about a DynamicMethod is that
it’s garbage collectable by default. Therefore, once you’re done using a Dynamic-
Method, you don’t have to worry about memory piling up. The GC will happily get rid
of it for you once it’s determined that it’s no longer used.

 Now that you know what the basic differences between Reflection.Emit and Dynamic-
Method are, let’s see how you can use this class to create a method at runtime.

5.5.2 Creating shim methods

Let’s revisit the ToString() example you saw in section 2.4.2. Instead of using reflec-
tion, let’s generate a method that will create the descriptive string for you at runtime.
Remember that the goal is to take all of the public, instance-level, readable properties
on an object and concatenate them together. As with the CustomerReflection class,
let’s create a CustomerDynamicMethod class that will defer the implementation of
ToString() to a helper extension method:

public sealed class CustomerDynamicMethod : Customer
{
  public override string ToString()
  {
    return this.ToStringDynamicMethod();
  }
}

The implementation of ToStringDynamicMethod() is similar to the code in listing 5.6.
If the DynamicMethod doesn’t exist for a given type, it’s created and added to a
Dictionary<Type, Delegate> field. The method creation is in a method called Create-
ToStringViaDynamicMethod()—its implementation is shown in the following listing.
As you can see, there’s really not much to it: you create your dynamic method, add
opcodes, and create a delegate.

private static Func<T, string> CreateToStringViaDynamicMethod<T>()
{
  var target = typeof(T);

  var toString = new DynamicMethod(
    "ToString" + target.GetHashCode().ToString(),
    typeof(string), new Type[] { target });

  toString.GetILGenerator().Generate(target);
  return (Func<T, string>)toString.CreateDelegate(

Listing 5.11 Creating dynamic code with DynamicMethod

http://mng.bz/mK5M
http://mng.bz/mK5M
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    typeof(Func<T, string>));
}

The DynamicMethod constructor is similar to the DefineMethod() method on a Type-
Builder. You provide a method name, the type of the return value, and the types of
the parameters (if you have any). Once you have the DynamicMethod, you get an
ILGenerator via GetILGenerator(). Hey, guess what? You can reuse the Generate()
extension method from the code snippet in the “Creating the type” subsection of sec-
tion 5.4.1, because it’s the exact same opcode generation. The final step is to turn the
method into a delegate, and then you’re done.

 As you can see, when all you need to create is a method, the DynamicMethod
approach is the way to go over Reflection.Emit. You still need to emit the opcodes, but
you don’t have to create the builder classes to get there. 

5.5.3 Using caching for performance

In both the Reflection.Emit and DynamicMethod implementations, a collection (spe-
cifically, a dictionary) was used to store the dynamic code artifacts once they were
created. This is an extremely important technique to use when you create dynamic
code if you can. Once you’ve created the necessary ToString() code, you don’t
need to keep recreating it because the type definition won’t change for the lifetime
of the application. In fact, if you don’t cache the dynamic code, your performance
will suffer greatly. Figure 5.7 is a chart that shows the relative performance of all the
techniques you’ve seen in this chapter and chapter 2 to implement ToString() in a
reusable fashion. 

 The performance among all five approaches is relative. The Reflection.Emit is the
fastest of them all (even faster than the hard-coded approach!). Reflection is more
than 10 times worse than Reflection.Emit. But if you turn off caching by removing the
collection, things get really, really bad for dynamic code. Figure 5.8 shows the adjusted

Figure 5.7 Relative performance 
of dynamic coding techniques. As 
expected, reflection is the 
slowest of them all.



168 CHAPTER 5 Generating code with Reflection.Emit
values with no caching, and it’s painfully clear that you must have a caching strategy in
place when you create dynamic code.

 Without caching, Reflection.Emit becomes 4000 times worse than the hard-coded
approach. Add debugging information, and performance dive-bombs. The message is
clear: cache your dynamic code results whenever possible.

5.5.4 Disadvantages of DynamicMethod 
There are disadvantages to DynamicMethod: debugging and verifiability. With Dynamic-
Method, there’s no way to generate debug information on the fly like you can with the
Reflection.Emit classes. Therefore, you can’t step into the code you generate in Dynam-
icMethod. The other problem is verification of code. Section 5.4.3 mentions a tool
called peverify.exe to ensure that the code you generate with Reflection.Emit is cor-
rect. But peverify only works with assemblies, not specific methods. This means you
don’t have a way to ensure the code in the dynamic method is verifiable.

 There’s one way around this using dependency injection. Here’s how it works. You
create an interface that will have two implementations: one that uses DynamicMethod
and one that uses Reflection.Emit. The interface defines a method that will return a
Func or an Action that’s dynamically created by the concrete class. During debugging
and testing, you can use the version that uses Reflection.Emit, so you can verify the
code and debug it using the techniques described in this chapter. Once you’re confi-
dent things are working as expected, you can move over to the DynamicMethod imple-
mentation. Either way, you don’t care how the dynamic code was created.

 Let’s use real code to crystalize this approach. First, here’s the interface:

public interface IToStringBuilder
{
  string ToString<T>(T target);
}

Figure 5.8 Removing caching 
from dynamic code. Without 
caching, your solution may have 
performance issues, so cache 
dynamic results whenever 
possible.
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Now, create two implementations of this interface. The following listing shows the two
concrete classes. They use the examples from sections 5.4.1 and 5.5.2, so there’s not
much to them.

public sealed class ToStringDynamicMethodBuilder
  : IToStringBuilder
{
  public string ToString<T>(T target)
  {
    return target.ToStringDynamicMethod();
  }
}

public sealed class ToStringReflectionEmitBuilder
  : IToStringBuilder
{
  public string ToString<T>(T target)
  {
    return target.ToStringReflectionEmit();
  }
}

Here’s where the flexibility of this approach becomes apparent. You create a version
of Customer that takes a reference to an IToStringBuilder on construction:

public sealed class CustomerDependencyInjected
  : Customer
{
  public CustomerDependencyInjected(IToStringBuilder builder)
    : base()
  {
    this.Builder = builder;
  }

  public override string ToString()
  {
    return this.Builder.ToString(this);
  }

    private IToStringBuilder Builder { get; set; }
}

The ToString() method gets its return value from the builder injected into it. This
gives you an easy way to swap out your two approaches. When you create this version
of a customer, you specify which dynamic code builder you want to use:

new CustomerDependencyInjected(
  new ToStringDynamicMethodBuilder())

If you started to run into problems with your code generation, you swap out the con-
crete class for one that you can debug and verify:

new CustomerDependencyInjected(
  new ToStringReflectionEmitBuilder())

Listing 5.12 Concrete implementations of IToStringBuilder
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NOTE There’s one way to see what the IL is that you generate in a Dynamic-
Method via a debugging visualizer. Visit http://mng.bz/j4s9 for more on how
to do this. You can also debug DynamicMethod via WinDBG, but that’s not a
trivial endeavor. All the details you need to know to get this to work can be
found at http://mng.bz/1s3m. 

5.6 Summary
In this chapter, you saw the strength behind the Reflection.Emit APIs to generate code
at runtime. You learned about the opcodes that are the foundation for every .NET lan-
guage and how they’re used to define and structure your implementations. You found
powerful techniques to debug your dynamic code to ensure its correctness. You dis-
covered two different options in this API and the situations where one should be used
over the other. With this newfound information, you now have a number of tools avail-
able to you to generate code at runtime for scenarios mentioned in section 5.2. Need
a new type to act as an intermediary of an object, or a mock of a type? Generate one
with the Emitter classes. Want to optimize a call path that’s determined at runtime?
Build a dynamic method. Want to create a compiler for a language you’ve created?
You can use the Emitter classes for that. Any time you have the need to generate code
at runtime, System.Reflection.Emit is your friend. 

 Although generating code using opcodes is extremely powerful, there’s yet
another way in .NET to perform such creations using a higher-level API that’s arguably
easier to comprehend, yet as powerful as raw opcode usage. This technique uses
something called expressions, and that’s what the next chapter is all about.

http://mng.bz/j4s9
http://mng.bz/1s3m


Generating code
with expressions
As you saw in chapter 5, you can use the Reflection.Emit APIs to create dynamic
code that you can execute at runtime. This requires intimate knowledge of IL. Let’s
be honest: learning IL isn’t a skill set that most .NET developers have, nor is it one
they necessarily want to acquire, even if they’re interested in metaprogramming
techniques. The reason is simple: writing code in IL can easily lead to incorrect
implementations and requires a mental model of code execution in .NET that’s not
as intuitive as the one a high-level language provides.

 Fortunately, there’s another API in .NET that lets you create code without having
to know anything about IL. This is the Expression API that exists within the LINQ
world. In this chapter, you’ll see how you can view your code as data in a way that
will make metaprogramming much easier to do in .NET. When something is easier to
accomplish, you end up using it more, which is why learning about expressions
to generate dynamic code is advantageous. You’ll end up seeing scenarios in your
code where you can use expressions to handle certain problems elegantly. Let’s
start by looking at how expressions work at a higher level.

This chapter covers
■ Using code as data
■ Using the power of expression trees
■ Improving code with expressions
171
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6.1 Expression-oriented programming
This section covers how expressions work and why they’re so desirable in the world of
metaprogramming. In essence, expressions are a representation of code via a data struc-
ture, and you’ll see how you can use this representation (coding structures as data)
effectively and the flexibility you gain with this view.

6.1.1 Understanding code as data

In chapter 1 we spent a fair amount of time defining metaprogramming. You may recall
that section “Creating IL at runtime using expression trees” (a part of section 1.2.3) gave
a high-level overview of expressions. After that overview, you saw metaprogramming
techniques in action that were at the lower level of IL. That gave you a solid (and we
think necessary) understanding of the inner workings of .NET, but more often than not,
you don’t need to write code in IL. You’re finally going to come back to expressions, the
focus of this chapter. Although that section gave a good overview of expressions, it’s
time to narrow the discussion to a discrete example that you’ll use as a starting point
into how expressions work in .NET.

 Consider the following function:

public int Add(int x, int y)
{
   return x + y;
}

Writing this as an expression in .NET isn’t too hard—you’ll see an example of this
momentarily. But consider this nomenclature:

(+ x y)

If you’ve spent any time even glossing over the Lisp language, you know where this
line of code comes from. Even if you’ve never seen Lisp before, you probably could
guess that this code is taking two variables and adding them together. There’s a big
reason why you’re seeing a little bit of Lisp at this point, because at its core Lisp is all
about expressions. For example:

(1 2 add)

This is a list in Lisp that contains three atoms: 1, 2, and add. Note that there’s no dif-
ference in the formatting between a list and how the add operator works. They’re
both expressions. Code and data are both expressed the same way. This arrangement
allows you to handle a function as if it were a data structure, which allows tremendous
flexibility for a developer to modify and alter code in a fairly natural way. If you write
your code in IL, there’s no natural way to modify that code in the same way you’d
modify a list of items. If you can treat your code like data, it becomes more natural to
modify code as you would modify data. That’s why a concept like expressions has been
around for so long. This flexibility can also give rise to some mind-bending implemen-
tations, but we’ll keep our dive into Lisp at this more moderate level for now.
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NOTE Lisp is one of the oldest programming languages and is considered to
be the source and inspiration for many ideas you probably take for granted in
many languages, such as trees and self-hosted compilers, among other things.
We don’t expect you to become proficient in Lisp in any fashion—we’re not
even remotely close to being Lisp experts ourselves—but spending some time
learning a little about Lisp is always a good thing. You can find out more
about Lisp from http://landoflisp.com. Also, The Joy of Clojure by Amit Rathore
(Manning, 2011) covers a fairly recent language called Clojure that’s heavily
influenced by Lisp. Check out http://manning.com/rathore/.

How would you take the add C# function you saw in the beginning of this section and
turn it into an expression? Like this:

Expression<Func<int, int, int>> add = (x, y) => x + y;

That’s not as concise as the Lisp syntax, but that’s how it works in C#. The add variable
after this point is a lambda expression. It’s not a function you can execute. In fact, if
you tried to write this

Expression<Func<int, int, int>> add = (x, y) => x + y;
var result = add(2, 3);

you’d get a compiler error stating that you’re trying to use add, which is a variable, like
a method, which it isn’t. It’s an expression tree at this point. To execute this code, you
need to do this:

Expression<Func<int, int, int>> add = (x, y) => x + y;
var result = add.Compile()(2, 3);

The Compile() method takes the
expression tree and turns it into
something that the runtime can
execute—namely, IL. Figure 6.1
shows what the tree looks like
from a logical perspective.

 Notice that you don’t ever see
any IL when you use an expression, and frankly, that’s a good thing. Knowing intimate
details of IL isn’t necessarily bad because it can yield great insight into the inner work-
ings of .NET. However, coding in IL can lead to some unintended results if you’re not
extremely careful. Using expressions is much more natural.

 Unfortunately, you can’t create an expression at runtime using the “fat arrow” syn-
tax: =>. You’ll see more details on the Expression API in this chapter, but the following
is a code snippet that does the same thing as the lambda expression syntax—the only
difference is it uses the Expression API explicitly:

var x = Expression.Parameter(typeof(int));
var y = Expression.Parameter(typeof(int));

return (Expression.Lambda(
   Expression.Add(x, y), x, y)
      .Compile() as Func<int, int, int>)(2, 3);

Figure 6.1 A logical 
representation of an expression 
that adds two parameters. As you 
can see, IL is nowhere to be found 
because you’re focusing on the 
structure of the implementation, 
not the opcodes to do it.

http://landoflisp.com
http://manning.com/rathore/
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This may seem a little verbose, but look at the next code snippet that does the same
thing in IL:

var method = new DynamicMethod("m",
     typeof(int), new Type[] { typeof(int), typeof(int) });
var x = method.DefineParameter(
     1, ParameterAttributes.In, "x");
var y = method.DefineParameter(
     1, ParameterAttributes.In, "y");
var generator = method.GetILGenerator();
generator.Emit(OpCodes.Ldarg_0);
generator.Emit(OpCodes.Ldarg_1);
generator.Emit(OpCodes.Add);
generator.Emit(OpCodes.Ret);
return (method.CreateDelegate(
     typeof(Func<int, int, int>)) 
     as Func<int, int, int>)(2, 3);

In our opinion, the first approach is easier to read and more succinct. Imagine if you
had to write all your dynamic code this way. Yes, you could do it, but using less code
that does the same thing seems like a better approach.

 Later in this chapter you’ll use this API extensively to create code that will create
different code based on that code at runtime. The next section gives an example of a
popular .NET assembly that uses expressions to simplify method resolution.

6.1.2 Expressions take metaprogramming mainstream

You may be thinking, “Great, expressions are awesome and expressive and wonderful,
but where in the world would I use this in my code?” At first glance, it may seem like

Why can’t I use var for my expressions?
You may have noticed that the code snippets in this section use an explicit type dec-
laration for the lambda expression. Here’s why. If you typed this

var expression = (x, y) => x + y;

did you mean this?

Func<int, int, int> expression = (x, y) => x + y;

or this?

Expression<Func<int, int, int>> expression =
   (x, y) => x + y;

Without explicit typing, the compiler can’t tell which one you mean, and there’s a dif-
ference. A Func or an Action type turns into an anonymous method in your code
once the compiler is done, but an expression resolves into API calls that you’ll see
in section 6.2.

To find out more gory details about when the var keyword can’t be used in C# check
out the two articles at http://mng.bz/l0D0 and http://mng.bz/56bw.

http://mng.bz/l0D0
http://mng.bz/56bw
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you’d never use expressions in your code base (though if you’re reading this book,
you might). But a lot of .NET-based frameworks out there use expressions to some
degree or another. One in particular is Component-based Scalable Logical Architec-
ture (CSLA), which is a business object framework. Our intent isn’t to go over every
aspect of CSLA in this section; rather, you’re going to see how CSLA uses expressions
under the hood.

 If you’ve ever used CSLA, you’re familiar with the object creation convention
through the DataPortal class. You don’t make an instance of an object directly; you
let the portal create it for you. The following code listing demonstrates how you could
fetch data for a Person object via an identifier typed as a Guid.

[Serializable]
public sealed class Person
  : BusinessBase<Person>
{
  private Person()
    : base() { }

  public static Person Fetch(Guid id)
  {
    return DataPortal.Fetch<Person>(id);
  }

  private void DataPortal_Fetch(Guid id)
  {
    // ...
  }
}

You usually create a static Fetch() method that takes all the values it needs for a suc-
cessful lookup. You pass those values into the Fetch() method from the DataPortal.
The DataPortal creates an instance of the target specified by the generic parameter
value and then looks for a DataPortal_Fetch method that has a parameter with the
right type. In this case, there’s a method that takes a Guid, so everything will work out.

NOTE If your static Fetch() method takes multiple parameters, you have
to pack those up into one criteria object. Using a Tuple makes that rela-
tively painless.

CSLA is using a bit of reflection to resolve the call. It’s going to do something like this:

var method = typeof(T).GetMethod(
  "DataPortal_Fetch", 
  BindingFlags.Public | BindingFlags.NonPublic | 
    BindingFlags.DeclaredOnly | BindingFlags.Instance,
  null,
  new Type[] { criteria.GetType() }, null)

The exact implementation in CSLA is more involved than this, but it boils down to a
method lookup via reflection. Once CSLA knows the method exists, it then creates

Listing 6.1 Fetching data for an object in CSLA
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a method dynamically at runtime to figure out the call flow and caches this in mem-
ory. In chapter 5 (section 5.5.3), you saw the benefit of keeping dynamic methods
around once they’re created, which is why CSLA does this. But CSLA doesn’t use
DynamicMethod; it uses the Expression API to create this new method. When CSLA was
first created for .NET, it initially used reflection exclusively, and once DynamicMethod
was introduced, CSLA switched over to that for performance reasons. But the Expres-
sions API produces code with the same performance characteristics without requiring
the developer to understand IL, which is why CSLA uses the Expression API for
method invocation scenarios like DataPortal_Fetch.

TIP CSLA is available in Nuget. Download the source code from www.lhotka
.net/cslanet/Download.aspx. If you’re interested in seeing how CSLA uses the
Expression API, take a look at the DynamicMethodHandlerFactory class.

Now that you’ve had a high-level overview of expressions and where they exist in the
.NET world, let’s take a look at the mechanics of expressions. You’ll start by seeing why
expressions exist in a sub-namespace of LINQ.

6.2 Making dynamic methods with LINQ Expressions
As you’ve already seen in this chapter, you can use expressions to create methods on
the fly. In this section, you’ll dive deeper into this API to see what’s possible with
expression creation in .NET, including the following:

■ Creating and calling methods
■ Using mathematical operations
■ Adding exception handlers
■ Controlling the flow of code

Before we do that, let’s start by looking at why LINQ is even in the picture with
expressions.

6.2.1 Understanding LINQ Expressions

At first glance, for the Expression API to reside in the System.Linq.Expressions
namespace may seem odd. What does LINQ have to do with expressions anyway? The
best way to see how expressions are used in .NET is to write some LINQ, decompile it,
and look at the results.

 The following listing shows a simple LINQ query that finds objects with property
values that contain the character a.

public sealed class Container
{
  public string Value { get; set; }
}

// ...

Listing 6.2 Using LINQ to filter a list of objects

www.lhotka.net/cslanet/Download.aspx
www.lhotka.net/cslanet/Download.aspx
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var containers = new Container[] 
{ 
  new Container { Value = "bag" }, 
  new Container { Value = "bed" }, 
  new Container { Value = "car" } 
};

var filteredResults = 
  from container in containers
  where container.Value.Contains("a")
  select container;

There’s nothing fancy going on here—you’re using a where clause to filter the list.
Let’s say your filtering was more complex and dynamic based on a user’s choices in
the application. The user may want, for example, to find the Container objects where
the Value property contains a and is between 3 and 10 characters long. You could
write this LINQ statement with no issues, but that would be hardcoded at compile-
time. There’s no way for you to change that query with the familiar LINQ techniques
most .NET developers are aware of. But if you’re knowledgeable with expressions, you
can change the filter on the fly. Let’s change the filter from listing 6.2 to use an
expression, shown in the following listing.

var argument = Expression.Parameter(typeof(Container));
var valueProperty = Expression.Property(argument, "Value");
var containsCall = Expression.Call(valueProperty,
  typeof(string).GetMethod(
    "Contains", new Type[] { typeof(string) }),
  Expression.Constant("a", typeof(string)));
var wherePredicate = Expression.Lambda<Func<Container, bool>>(
  containsCall, argument);
var whereCall = Expression.Call(typeof(Queryable), "Where",
   new Type[] { typeof(Container) },
   containers.AsQueryable().Expression, wherePredicate);

var expressionResults = containers.AsQueryable()
  .Provider.CreateQuery<Container>(whereCall);

You need an IQueryable object reference to start out, which is what the AsQueryable()
extension method is for. Then, you use the Provider property to call the CreateQuery()
method. That method takes an expression that can do pretty much whatever you want it
to do to the queryable object. The next section explains the details about the creation of
this expression in detail, but for now it’s sufficient to take away the fact that you can cre-
ate dynamic LINQ queries at runtime via the Expression API.

 At this point, it’s time (finally!) to go over the API within System.Linq.Expression.
You’ll start by going over the expression created in listing 6.3, one part at a time.

Listing 6.3 Using a LINQ expression to create the filter
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6.2.2 Generating expressions at runtime

This section examines the classes and methods you use to create dynamic expressions.
The API surface is quite extensive, so we focus on the common activities you’ll do
when creating an expression. You’ll also see how you can use other features in the
Expression API to create rich implementations in your expressions.

CREATING A SIMPLE LAMBDA EXPRESSION

Listing 6.3 created an expression to perform a dynamic query on a simple data set.
The query was the same as writing this line of code:

where container.Value.Contains("a")

This is the same as writing the following line of code (which is what the C# compiler
will do with the previous LINQ statement, more or less):

containers.Where(value => value.Value.Contains("a"))

Let’s go through each line of code in listing 6.3 to see how the expression translates
into the exact same line of code that invokes the Where() method on the list.

 The first thing you need is a parameter to the lambda expression—that’s what the
value parameter is. You do that by creating a ParameterExpression:

var argument = Expression.Parameter(typeof(Container));

You can give an explicit name to the parameter via an override of Parameter(), but in
this case you only need to specify the type, which is a Container type. Note that creat-
ing the ParameterExpression object requires a static call on the Expression class.
That’s how you’ll create all the expression pieces you need. You go through a static
factory method on Expression.

 Now that you have a parameter of type Container, you need to use the Value prop-
erty on that parameter. To get it, use the Property() method, which returns a
MemberExpression:

var valueProperty = Expression.Property(argument, "Value");

As with the Reflection API, there are numerous overloads with many of these fac-
tory methods. You can get a MemberExpression object for a property by passing a

Using DynamicQueryable
Buried within the sample that comes with an installation of Visual Studio lies a
hidden namespace gem called System.Linq.Dynamic, which contains a class
called DynamicQueryable (among many other interesting classes). This class allows
you to write your dynamic query via a small piece of code rather than explicitly
using the Expression API. The code in listing 6.3 is reduced to one line of code
with DynamicQueryable:

var dynamicResults = containers.AsQueryable()
  .Where("Value.Contains(\"a\")");

For more information on how to use this cool API, see http://mng.bz/KN7v.

http://mng.bz/KN7v
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PropertyInfo object into the Property() method, rather than using a string,
for example.

 The next step is calling Contains() on that property. That’s what the following
line of code does:

var containsCall = Expression.Call(valueProperty,
  typeof(string).GetMethod(
    "Contains", new Type[] { typeof(string) }),
  Expression.Constant("a", typeof(string)));

The Call() method returns a MethodCallExpression. You can invoke a method in
numerous ways, so you can imagine there are a lot of overloads to Call(). In your
case, you need to call the method on the Value property, which is why that
MemberExpression is passed in first. Then you specify the method you want to call on
the property. Here, the code uses a bit of reflection via GetMethod() to look up the
Contains() method on a string with the right signature. The last things Call()
needs are any argument values. You only need to pass in the literal "a" string value,
which is what a ConstantExpression provides.

 You’re close to done at this point. You now need a lambda expression that you’ll
pass into a Where() invocation:

var wherePredicate = Expression.Lambda<Func<Container, bool>>(
  containsCall, argument);

The Lambda() call takes an expression to represent the body of the lambda and any
arguments the lambda needs.

 Finally, you need to invoke the Where() method on the queryable object itself:

var whereCall = Expression.Call(typeof(Queryable), "Where",
   new Type[] { typeof(Container) },
   containers.AsQueryable().Expression, wherePredicate);

That’s it. You now have an expression that will invoke the correct method when Create-
Query() is invoked.

 Let’s move on to look at APIs that can help you with adding mathematical capabilities.

INCLUDING MATHEMATICAL OPERATIONS

Let’s revisit the code snippet in section 6.1.1. In that expression, you saw how you
could create a method that would add two numbers. You did that via the Add() method,
which returns a BinaryExpression. Numerous Expression APIs return a Binary-
Expression. For example, you can make the code in section 6.1.1 perform a subtrac-
tion with one change:

Expression.Subtract(x, y)

If you need the remainder of x divided by y:

Expression.Modulo(x, y)

You can also raise the power of x by y via the Power() call:

Expression.Power(x, y)
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What’s nice about this function is that you don’t have to make a MethodCallExpression
to Math.Pow(). Use this static method. But you do need to make sure that the types of
x and y are defined to be a double type. Expression.Power() ends up making a call
to Math.Pow() for you, so you can’t use the int type.

 You also have the ability to use checked mathematical operators that will raise an
OverflowException. For example, AddChecked() will handle this scenario. Speaking
of exceptions, you may wonder whether you can add exception handlers to your
expressions. The answer is yes, you can, and that’s what the next section is about.

USING EXCEPTION HANDLERS

Let’s say you created a dynamic method that uses a checked addition via Add-
Checked(). If someone passes in two values that would cause an overflow, you’d get an
exception. Although it may seem odd to catch the OverflowException that you want
to have raised with AddChecked(), let’s see how you can do this with expressions in the
following listing.

var x = Expression.Parameter(typeof(int));
var y = Expression.Parameter(typeof(int));

var lambda = Expression.Lambda(
  Expression.TryCatch(
    Expression.Block(
      Expression.AddChecked(x, y)),
    Expression.Catch(
      typeof(OverflowException),
      Expression.Constant(0))), x, y);

Before 4.0, the Expressions API was limited in what it could do. One of its limitations
was in the area of exception handling. There was no way to add a try...catch block
to your expression body. But in the 4.0 version, you now have that support.

 The first thing you need to do is add the exception handler. In listing 6.4, Try-
Catch() is called, which returns a TryExpression. Next, take the code that you want
in the try block and wrap it in a BlockExpression. That’s what the Block() call does.
Finally, with a try...catch block, you need to define the code block that will run if an
exception occurs, which is what the Catch() call performs. Note that in listing 6.4, the
catch block is defined to catch exceptions of type OverflowException.

 With this try...catch block in place, the following code would return 5:

return (lambda.Compile() as Func<int, int, int>)
  (2, 3);

But this code will return 0:

return (lambda.Compile() as Func<int, int, int>)
  (int.MaxValue, int.MaxValue);

What’s nice about the exception handling support in the Expression API is that it’s not
limited to what you’ve seen here. You can create try-finally handlers, multiple

Listing 6.4 Adding a try-catch block to an expression
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catch handlers—in fact, there’s a TryFault() call that will create a fault handler.
Recall from chapter 5’s section 5.1.3 that there’s a fault handler that isn’t supported in
either C# or VB. With the Expression API, you can add that support if you want, with
relative ease.

ADDING CONTROL FLOW

The Expression API also has numerous ways to support branching and control flow in
your code. Let’s look at a simple example of a function that takes a bool and returns a
1 if the argument is true, and 0 if the argument is false.

 As before, the first thing you need is an argument:

var @switch = Expression.Parameter(typeof(bool));

Next, call the Condition() method:

var conditional = Expression.Condition(@switch,
  Expression.Constant(1),
  Expression.Constant(0));

It’s pretty simple. The first expression has to return a bool value, which is your argu-
ment. If it evaluates to true, the expression specified by the second argument is exe-
cuted. Otherwise, the last expression is run. If you saw this code in C#, it would look
something like this:

public void AFunction(bool @switch)
{
  if(@switch)
  {
    return 1;
  }
  else
  {
    return 0;
  }
}

Finally, you compile the expression stuffed into a lambda expression:

var function = (Expression.Lambda(conditional, @switch)
  .Compile() as Func<bool, int>);
var result = function(true);

The value of the result would be 1 in this case. You can also use Break() to move to a
specific label in the expression body. There’s even a Goto() method if you want “goto”
semantics in your expression.

 That covers the basics of expressions in .NET. There’s so much more in the Expres-
sion API that we haven’t covered—we’ve barely scratched the surface of what you can
do with expressions. In fact, you’re not limited by the Expression API compared to
what you can do in IL with DynamicMethod. Is there any disadvantage to using expres-
sions compared to using a DynamicMethod? Why would you use expressions over a
DynamicMethod? In the next section you’ll see how the two approaches compare.
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6.2.3 Comparison with dynamic methods

Chapter 5 introduced you to the DynamicMethod class, which was an IL-based way to
generate a method at runtime. As you’ve seen in this chapter, the Expression API pro-
vides the same functionality, so the inevitable question is which one should you
choose? We’ll take two views on this question: abstraction and performance.

 Abstraction is all about using an API that’s easy to understand, such that a devel-
oper can start using it with a minimal learning curve. Both approaches have an API
that’s consistent, but in our opinion avoiding IL is the preferred approach. Being able
to use Expression.Call() to invoke a method is easier than trying to figure out the
right opcodes to move local variables or arguments on the stack (along with the object
for instance methods). Again, at the end of the day, this is a subjective metric, but
we’ve used both approaches, and our preference is the Expression API.

 Another thing to take into consideration is whether or not there is overhead in
using one over the other. The code samples for this book contain code that compares
the performance of the DynamicMethod way of creating a generic ToString() imple-
mentation to using the Expression API. We won’t show that code here in the book, as
you’ve already seen how the DynamicMethod version works, and the Expression API
version is as lengthy. What’s far more interesting is to see the comparison between the
execution times, which is illustrated in figure 6.2.

 As you can see, there’s not much difference between the two. There’s a slight ben-
efit in execution time with DynamicMethod, but the difference is trivial. On average,
executing the Expression-based method took about 1.48623 microseconds. The
DynamicMethod approach was 1.48601 microseconds. Both implementations effec-
tively execute at the same speed. The key difference is that with the Expression API,
you don’t have to learn IL to use it.

Figure 6.2 Comparing 
the execution time 
between an expression 
and DynamicMethod. 
The difference between the 
two is virtually the same.
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However, the graph in figure 6.2 is a little misleading. The data was gathered using a
cached version of both approaches; it doesn’t take into consideration the time it takes
to create the method.

 Let’s see how much time it takes to create a method that performs the follow-
ing calculation:

f(x) = ((3 * x) / 2) + 4

Here’s how it’s done with expressions:

var parameter = Expression.Parameter(typeof(double));
var method = Expression.Lambda(
  Expression.Add(
    Expression.Divide(
      Expression.Multiply(
        Expression.Constant(3d), parameter),
      Expression.Constant(2d)),
    Expression.Constant(4d)),
  parameter).Compile() as Func<double, double>;

Here’s how you can do it with DynamicMethod:

var method = new DynamicMethod("m",
  typeof(double), new Type[] { typeof(double) });
var parameter = method.DefineParameter(
  1, ParameterAttributes.In, "x");
var generator = method.GetILGenerator();
generator.Emit(OpCodes.Ldc_R8, 3d);
generator.Emit(OpCodes.Ldarg_0);
generator.Emit(OpCodes.Mul);
generator.Emit(OpCodes.Ldc_R8, 2d);
generator.Emit(OpCodes.Div);
generator.Emit(OpCodes.Ldc_R8, 4d);
generator.Emit(OpCodes.Add);
generator.Emit(OpCodes.Ret);
var compiledMethod = method.CreateDelegate(
  typeof(Func<double, double>)) as Func<double, double>;

If you create 10,000 of each of these and figure out the averages, you get a graph like
figure 6.3.

 It took 6.8 times longer to use expressions than to use DynamicMethod. Keep in
mind, though, that creating the method using an expression took, on average, under
1 ms. That may be a performance bottleneck for your application, depending on how
fast you need it to execute, but once you create the method, you’ll probably cache it
so you won’t incur any time recreating it. Furthermore, once the method is created,
there’s no difference in execution time between an expression and a DynamicMethod.
Although expressions are slower, that creation time may be acceptable for your appli-
cation. As with any performance results, make sure you do your own evaluation and
use your data to come to a conclusion that’s right for your code base. 

 You now have a solid, basic understanding of expressions in .NET. But there’s more to
expressions than creating methods. You can debug them, use them in Reflection.Emit,
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and mutate them (sort of!). In the next section, you’ll see how you can accomplish all
three tasks.

6.3 Using expressions effectively
Now that you’ve seen how expressions are created, let’s get into areas that will make
your expression life easier with debugging, emitting, and mutating. Learning these
techniques is important so that you know your expressions do what you think they
should do. Let’s start by seeing how to add debug information to your expression. 

6.3.1 Debugging expressions

Using the Expression API is a simpler, cleaner experience than trying to work with IL.
That said, any time a developer writes a piece of code, something can go wrong. Fortu-
nately, there are a couple of techniques you can use to debug your expressions. Let’s
start with the first one: visualizing your expression in the debugger.

VISUALIZING AN EXPRESSION IN VISUAL STUDIO

Whenever you create an expression of any type, you can get a textural visualization of
that node in Visual Studio when you run your code under the debugger. You move
your mouse pointer over the variable in code, drill down to the Debug View option,
and select Text Visualizer. Figure 6.4 shows what the expression from section 6.1 looks
like in this visualizer.

 You may wonder why the language used in the visualizer doesn’t use C# or VB.
Expressions can support options that a language may not be able to express (like a
fault block), so the designers of the visualizer came up with a different language to
show the expression. It’s not that hard to follow, and it’s a quick and easy way to get a
good idea for what your expression looks like at a particular point in its construction.

Figure 6.3 Comparing 
the time it takes to create 
an expression versus a 
DynamicMethod. 
The DynamicMethod 
approach is clearly quicker, 
but requires intimate 
knowledge of IL.
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NOTE For more information on the visualizer, see http://mng.bz/E6Q7. 

In the next section, you’ll see how you can step into an expression at runtime.

USING REFLECTION.EMIT TO DEBUG EXPRESSIONS

Although a visual representation of an expression is a nice tool to have, sometimes
you want to have the debugger dive right into the code. Unfortunately, an expression
is a tree that represents your code structure. Or is it? When you compile your method,
it’s emitting IL for you, like the code you emitted in chapter 5 that used Reflection
.Emit. Surprisingly, there’s a connection between expressions and Reflection.Emit
that lets you create debug information for an expression. Let’s see how you can get it
to work.

 Similar to the exception handler example, you’re going to start with the simple
“add two numbers together” code snippet from section 6.1.1. The first thing you need
to do is create a bunch of dynamic members from the Reflection.Emit API. Don’t
worry, you won’t need to write any IL for debugging purposes; these members act as a
host to your expression, as you’ll see in a moment:

var name = Guid.NewGuid().ToString("N");
var assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(
  new AssemblyName(name), AssemblyBuilderAccess.Run);
var module = assembly.DefineDynamicModule(name, true);
var type = module.DefineType(
  Guid.NewGuid().ToString("N"), TypeAttributes.Public);
var methodName = Guid.NewGuid().ToString("N");
var method = type.DefineMethod(methodName,
  MethodAttributes.Public | MethodAttributes.Static,
  typeof(int), new Type[] { typeof(int), typeof(int) });

All this code is doing is getting an in-memory dynamic assembly set up along with
dynamic type and method. As you can see, the names of these members don’t matter

Figure 6.4 Visualizing an expression in 
Visual Studio. The language may not look like 
anything you’ve seen before, but the intent 
is clear.

http://mng.bz/E6Q7
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in this case—what does matter is the debugging support. For that, you need a Debug-
InfoGenerator:

var generator = DebugInfoGenerator.CreatePdbGenerator();
var document = Expression.SymbolDocument("AddDebug.txt");

The generator created from CreatePdbGenerator() will be used when the expression is
compiled. You also need to create a symbol document based on a text file. The Add-
Debug.txt file in this example is the expression expressed in the language used in the
expression visualizer demonstrated in the previous section. We won’t show the code
here, but you’ll see what some of it looks like in a figure near the end of this section.

 To create debug symbols for sections of the code, you need to wrap a specific node
in the expression tree with a DebugInfoExpression:

var addDebugInfo = Expression.DebugInfo(document,
  6, 9, 6, 22);
var add = Expression.Add(x, y);
var addBlock = Expression.Block(addDebugInfo, add);

The section in the document that maps to the expression node being wrapped is
defined in the DebugInfo() call. This DebugInfoExpression object is used in a
Block() call to wrap the BinaryExpression that represents the addition functionality
of this expression.

 Once you’re done defining your expression, save the expression’s implementation
into the dynamic assembly:

var lambda = Expression.Lambda(addBlock, x, y);
lambda.CompileToMethod(method, generator);

var bakedType = type.CreateType();
return (int)bakedType.GetMethod(methodName)
  .Invoke(null, new object[] { a, b });

In this case, you use CompileToMethod() to specify which method you’re implement-
ing in the dynamic assembly along with the debug information related to this method.
At this point, when you step into the Invoke() call in a debugger, you’ll get into the
file specified in the SymbolDocumentInfo object. Figure 6.5 shows what this looks like
when you step into the “expression” language copied to the text file.

Figure 6.5 Debugging an 
expression. Even though the 
language may look a little odd, 
it’s clear that you’ve stopped at 
the point where addition occurs in 
the method.
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CAVEAT Using expressions to implement your methods in Reflection.Emit is
a nice alternative to IL. But there’s one major limitation to this approach: you
can only use expressions to define static methods. You can’t use an expression
for an instance method. For more information on why this is the case, see
http://mng.bz/U254.

You now know how you can debug your expression.
 Let’s move on to another topic: immutability. It will definitely affect your design,

and that’s what the next section is all about.

6.3.2 Mutating expression trees

Section 6.2 contained an overview of the Expression API to create dynamic methods at
runtime. In this section, you’ll look at expressions, immutability, and how you can cre-
ate new expressions based on existing ones via the ExpressionVisitor class. Let’s
start by looking at the reasoning behind having immutable trees.

IMMUTABILITY OF EXPRESSION TREES

To frame the conversation on immutable expressions, let’s go back to the expression
in section 6.1 that added two integers together:

Expression<Func<int, int, int>> add = (x, y) => x + y;

Let’s say someone wanted to change that expression to make it subtract the two argu-
ments rather than add them. Because Expression<T> is a reference type, the expres-
sion you were referencing will now perform a subtraction, not an addition. That’s not
at all what you want! Immutable data structures are easier to reason about because you
know that once the structure is created, it won’t change. This also has benefits from a
concurrency perspective because these structures are automatically thread-safe.

NOTE For more information on the benefits (and some shortcomings) of
programming using immutable values see http://en.wikipedia.org/wiki/
Immutability and http://mng.bz/AId8.

Being able to use a structure as the basis for future changes isn’t a bad thing. In the
next section, you’ll see how you can create a new expression based on an existing one.

CREATING VARIATIONS OF EXPRESSIONS

You now know that expressions are immutable. Let’s see how to create a new expres-
sion from the contents of an existing expression.

 The key class you need is ExpressionVisitor. As the name implies, this class is
based on the visitor pattern, which is designed to allow you to traverse complex object
structures in a simplistic way by “visiting” specific methods that you care about. 

NOTE For more on the visitor pattern, see http://en.wikipedia.org/wiki/
Visitor_pattern.

You feed a subclass of ExpressionVisitor the expression that’s your baseline and
then you overwrite the VisitXYZ() methods you’re interested in to create a new

http://mng.bz/U254
http://en.wikipedia.org/wiki/Immutability
http://en.wikipedia.org/wiki/Immutability
http://mng.bz/AId8
http://en.wikipedia.org/wiki/Visitor_pattern
http://en.wikipedia.org/wiki/Visitor_pattern
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expression. Let’s create a custom visitor that will change an add operation to a sub-
tract operation. The following code listing demonstrates what it takes to write such
a visitor.

internal sealed class AddToSubtractExpressionVisitor
  : ExpressionVisitor
{
  internal Expression Change(Expression expression)
  {
    return this.Visit(expression);
  }

  protected override Expression VisitBinary(BinaryExpression node)
  {
    return node.NodeType == ExpressionType.Add ?
      Expression.Subtract(
        this.Visit(node.Left), this.Visit(node.Right)) :
      node;
  }
}

As you can see, it doesn’t take that much code to change an expression. In this case,
you override VisitBinary() because you’re trying to find the mathematical expres-
sion node Add. If you find one, then you create a new node that subtracts the child
nodes. Note that you need to keep visiting the Left and Right nodes from the given
node because they may also contain addition operations. For example, if you didn’t
do that, an expression like this

(x, y) => ((((32 * x) / 4) + y) + (x + 4))

would turn into this:

(x, y) => ((((32 * x) / 4) + y) - (x + 4))

That’s not what you want, because there are still two addition operations in the
expression. Visiting the child nodes gives you the right result:

(x, y) => ((((32 * x) / 4) - y) - (x - 4))

NOTE Before .NET 4.0, there wasn’t a way in the .NET Framework to visit an
expression. The ExpressionVisitor class existed in System.Linq.Expressions,
but it was marked as internal, so you couldn’t use it. There are a couple of
ways to support this technique in .NET 3.5—see http://mng.bz/09bP and
http://mng.bz/a3N3 for details on these approaches.

You now know how to debug and change expressions in .NET. In the last main section
of this chapter, you’ll tie everything together to create programs that better them-
selves through evolutionary techniques.

Listing 6.5 Creating an expression visitor

http://mng.bz/09bP
http://mng.bz/a3N3
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6.4 Evolving expression trees
Throughout this chapter, you’ve seen how to create expressions as well as debug them.
Most of the time, the reasons to use expressions are similar to reasons you’d create a
DynamicMethod. But because of its expressiveness and mutability via the Expression-
Visitor class, you can use expressions in some amazing programming scenarios. In
this section, you’ll see how powerful metaprogramming and expressions can be when
it comes to creating new programs on the fly. The topic of conversation is genetic pro-
gramming. Next is an overview of genetic programming.

6.4.1 The essence of genetic programming

Before you start writing code that makes code better by rewriting it, let’s start with a
definition of what genetic programming is. Genetic programming is a technique that
uses ideas and operations from the theory of evolution to create new programs based
on existing ones. A genetic algorithm (GA) is a more general version of genetic pro-
gramming. You create a pool of programs, or a population, that changes via an itera-
tive approach. At each step in the process, you evaluate and/or change members of
the population based on various rules and conditions. If a program in the population
(called a chromosome) meets some kind of acceptable criteria, the process stops and
that chromosome is selected as the answer.

TIP There’s a vast amount of information on genetic programming. We rec-
ommend starting with John Koza’s web site: www.genetic-programming.com.
Koza is considered a pioneer in the world of genetic programming. The prob-
lem in section 6.4 is based on one of Koza’s first forays into genetic program-
ming. He used Lisp; we use expressions in .NET.

Let’s go through an example you’ll use in this chapter to create
functions that match a given data set. Let’s say you were given a
data set that looked something like that in figure 6.6. In the real
world, the data set would be larger than this, but you get the
idea. You’re given two columns: the input to a function and
the result of that input to the function.

 Looking at the data in figure 6.6, you may be able to figure
out that the underlying function is this:

f(x) = x ^ 3

This means x raised to the power of three. You’d be right, but the
pattern behind the data values you’re given may be much
harder to find an underlying function. Let’s look at how you could use genetic pro-
gramming to evolve functions that try to produce outputs that match (or are close to)
the data set values you’re given.

Figure 6.6 Inputs and 
outputs to a function. 
Keep in mind that you 
don’t know what the 
function is.

www.genetic-programming.com
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POPULATION

The first step is to create a population of functions to use for your first iteration. How
you create those functions is up to you. They could be a best-guess by someone or gen-
erated randomly by a computer. However you do it, let’s say you come up with the fol-
lowing set of functions:

f(x) = x ^ 2
f(x) = x + 3
f(x) = (x ^ 3) + 1
f(x) = 3 * x

Note that your population size will probably be bigger than this, but for our purposes
this will suffice. One of these functions is a decent fit for your target data set, and
that’s okay. You’re starting with a bunch of guesses, and you’ll improve on them as you
move along. The next step is to pick “good” candidates. 

SELECTION

Now that you have a population of chromosomes, you need to find those that are a
good fit. To determine what a “good fit” is create a fitness function that gives a score
for a given chromosome. How you define that fitness function is completely up to you,
but hopefully it’s a good indicator for how well the chromosome solves the given prob-
lem. In this case, we’ll use the mean-squared error (MSE) to determine how fit a func-
tion is. The smaller the error, the better the function is at matching the given data set.

NOTE For more on MSE, see http://mng.bz/x12Q and http://en.wikipedia
.org/wiki/Mean_squared_error.

Figure 6.7 shows the average MSE for each of the four
functions in the population and an indicator that shows
which functions were selected for the next operation.

 You may wonder why the third one wasn’t selected
because it’s clearly the best choice. In genetic pro-
gramming, there are different methods to select the
“best” chromosome (such as tournament and rou-
lette), but all the methods have a degree of random-
ness built in. Therefore, by random selection, you
may not get what appears to be the best choice. But
this randomness keeps the gene pool (so to speak)
dynamic. As you’ll see in the next section, it’s possible to make something good out of
some not-so-good chromosomes.

CROSSOVER

Once you select chromosomes, you’ll determine (via random chance) whether
you’ll perform crossover on the chromosomes. This means you’ll take a piece (or
pieces) of one chromosome and swap them with a piece (or pieces) from another.
Figure 6.8 shows what happens when you swap the constant nodes between the
selected functions.

Figure 6.7 Selecting functions in 
genetic programming. You want to 
select good candidates, but you 
won’t always select the best ones.

http://mng.bz/x12Q
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Mean_squared_error
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 Sometimes crossover may lead to better solutions,
and sometimes it may make things worse. As you see in
figure 6.8, the first function now matches perfectly to
the data set you started with. But you’re not done yet—
there’s one more operation to cover that can throw
new material in the mix. 

MUTATION

After crossover is done, you may perform mutation on
a given chromosome. Usually the chance of mutation
happening in a GA run is low, but it can occur to keep
the population dynamic. A mutation may be a good or
a bad thing for a chromosome—you never know. Fig-
ure 6.9 shows what the fourth function looks like after crossover occurred and the
constant value changed into a whole new operation.

 Is this “better” or “worse”? We’ll leave that calculation up to the
interested reader. The point is you now have new genetic material
in your population that may (or may not) make things better.

ITERATION

Selection, crossover, and mutation—those are the three key opera-
tions that drive genetic programming. You keep iterating over the
population with these three operations until one of two things occurs:

■ You find a chromosome that exceeds some kind of threshold
value (for example, the MSE is under 0.5 percent).

■ You exceed the maximum number of iterations that you speci-
fied at the beginning of the run.

Hopefully you find a good enough solution before the second con-
dition happens. Fortunately, you can let a GA run go on for hours on a computer
and let it find all sorts of interesting solutions. In fact, people who have used GAs on
a number of diverse problems have found solutions that they would have never
thought of, and that can take them into new areas of research. The searching power
of GAs is quite impressive, and the more you take a look into how GAs work…well,
you may end up using them on a project of your own in the future to solve a prob-
lem in a unique way.

 Now that you have an overview of how GAs work, let’s see how you can do this in
.NET using expression trees.

6.4.2 Applying GAs to expressions

It’s one thing to see how GAs work using pictures. But getting them to work and see-
ing the results are the fun parts. In this section, you’ll see how to evolve expressions
to find a function to match a given data set. To do this, you’ll get code snippets for a
program we’ve written called ExpressionEvolver, which is included with the online

Figure 6.8 Performing crossover 
on two functions. Note how the 
first function has changed and 
how much “better” it is.

Figure 6.9
The results of 
mutating a 
function. The 
constant has been 
replaced with a 
whole new 
subtree.
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code. The code base is quite vast, so we’ll focus on the aspects that deal with the GA
operators and .NET expressions. Let’s start with how you can create random expres-
sions in .NET. 

CREATING RANDOM EXPRESSIONS

The first section of code you’ll see is the class (RandomExpressionGenerator) that
handles the creation of expressions. You need this when you create an initial popula-
tion, or when a mutation occurs. For this example, you’ll stick with the basic mathe-
matical operations defined in the Operators enum:

private enum Operators
{
  Add,
  Subtract,
  Multiply,
  Divide,
  Power
}

You’ll also need to be able to create constant values, which is handled in the GetCon-
stant() method:

private ConstantExpression GetConstant()
{
  var value = this.Random.NextDouble() * this.ConstantLimit;
  var constant = value * (this.Random.NextBoolean() ? -1d : 1d);
  return Expression.Constant(constant);
}

The value for the ConstantLimit property is passed into the constructor—it’s a best
guess to limit the size of constant values created during a GA run.

 Creating a random expression is a bit involved. It’s done with the GetRandom-
Operation() method, shown in the following listing.

private void GetRandomOperation(Operators @operator)
{
  var isLeftConstant = this.Random.NextDouble() < 
    this.InjectConstantProbabilityValue;
  var isRightConstant = this.Random.NextDouble() < 
    this.InjectConstantProbabilityValue;
  var isLeftBody = true;
  var isRightBody = true;

  if(!isLeftConstant && !isRightConstant)
  {
    isLeftBody = this.Random.NextDouble() < 0.5;
    isRightBody = !isLeftBody;
  }
  else if(isLeftConstant && isRightConstant)
  {
    isLeftConstant = this.Random.NextDouble() < 

Listing 6.6 Creating a random operation
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  this.InjectConstantProbabilityValue;
    isRightConstant = !isLeftConstant;
  }
  else if(@operator == Operators.Divide && 
    !isLeftConstant && !isRightConstant)
  {
    isLeftConstant = this.Random.NextBoolean();
    isRightConstant = !isLeftConstant;
  }

  this.Body = RandomExpressionGenerator.GetExpressionFunction(
    @operator)(
    isLeftConstant ? this.GetConstant() : 
  (isLeftBody ? this.Body : this.Parameter),
    isRightConstant ? this.GetConstant() : 
  (isRightBody ? this.Body : this.Parameter));
}

Most of the function ends up trying to make sure a good mix of constants and param-
eters are used during the creation of the random expression. The GetExpression-
Function()gets a reference to the right function from the Expression class based on
the value of the operation parameter:

private static Func<Expression, Expression, Expression> 
  GetExpressionFunction(Operators @operator)
{
  Func<Expression, Expression, Expression> selectedOperation = null;

  switch(@operator)
  {
    case Operators.Add:
      selectedOperation = Expression.Add;
      break;
    case Operators.Subtract:
      selectedOperation = Expression.Subtract;
      break;
    case Operators.Multiply:
      selectedOperation = Expression.Multiply;
      break;
    case Operators.Divide:
      selectedOperation = Expression.Divide;
      break;
    case Operators.Power:
      selectedOperation = Expression.Power;
      break;
    default:
      throw new NotSupportedException(
      string.Format(CultureInfo.CurrentCulture,
        "Unexpected operator type: {0}", @operator));
  }

  return selectedOperation;
}

To create a random expression, the GetRandomOperation() method is called in a for
loop that builds up the Body property to a desired size for the expression tree:
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private void GenerateBody(int maximumOperationCount)
{
  for(var i = 0; i < maximumOperationCount; i++)
  {
    this.GetRandomOperation(
      (Operators)this.Random.Next((int)Operators.Power + 1));
  }
}

Here’s how you would use RandomExpressionGenerator to create a random expres-
sion:

var parameter = Expression.Parameter(typeof(double), "a");
var body = new RandomExpressionGenerator(10,
  0.5, 100d, parameter, new SecureRandom()).Body.Compress();

You’ve now seen how to generate random expressions in .NET. Let’s move on to the
crossover function in a GA and see how to use the ExpressionVisitor class to han-
dle that.

HANDLING CROSSOVER WITH EXPRESSIONS

As you saw in the “Creating variations of expressions” subsection, you can use the
ExpressionVisitor class to create new expressions based on the structure of an exist-
ing expression. You’ll use this class to handle crossover. You pick a node in two expres-
sions and find where that node exists in the other expression, swapping it for the
node in the other expression. You do that with the ReplacementVisitor class, which
has ExpressionVisitor as its base class. Here’s how it does a transform:

public Expression Transform(Expression source,
  ReadOnlyCollection<ParameterExpression> sourceParameters,
  Expression find, Expression replacement)
{
  this.Find = find;

  if(sourceParameters != null)
  {
    this.Replacement = new ParameterReplacementVisitor()
      .Transform(sourceParameters, replacement);
  }
  else
  {
    this.Replacement = replacement;
  }

  return this.Visit(source);
}

The thing you need to keep in mind when you swap components between expressions
is that you can’t swap parameters. If you move a ParameterExpression node from one
expression to another, you’ll get an exception when you try to use that new expres-
sion. That’s why the ParameterReplacementVisitor class is used. It’s a nested class of
ReplacementVisitor, and all it does is replace any parameters in the target node with
the given source parameters.
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 ReplacementVisitor overrides VisitBinary(), VisitConstant(), and Visit-
Parameter(), all of which call ReplaceNode(), which determines whether the swap
should occur:

private Expression ReplaceNode(Expression node)
{
  if(node == this.Find)
  {
    return this.Replacement;
  }
  else
  {
    return node;
  }
}

You now have implementations in place to generate expressions, along with being
able to do crossover on two expressions. The last part is being able to create a data set
to test the GA. In the next section, you’ll see how you can use a bit of reflection magic to
make data generation easy.

GENERATING DATA SETS

When you’re evolving expressions, you need a set of data that the GA can use as its tar-
get. But nobody likes to create a data set by hand. You’d like to parse an expression in
a string like this:

"a => a + 3 * Math.Pow(a, 2.5)"

Once you have the lambda expression, you could compile it and feed it random input
values, capturing the results in the process. Then you’d have your data set that you
could give the GA. Unfortunately, there’s no parsing functionality in System.Linq
.Expressions, but a parser already exists with the C# compiler!

 In the ExpressionEvolver solution is a project called ExpressionBaker. This con-
tains a class called Baker, which takes a string and “bakes” it such that an expression is
created. This is done in the Bake() method:

public Expression<TDelegate> Bake()
{
  var name = string.Format(CultureInfo.CurrentCulture, 
    BakerConstants.Name, Guid.NewGuid().ToString("N"));
  var cscFileName = name + ".cs";
  File.WriteAllText(cscFileName,
    string.Format(CultureInfo.CurrentCulture,
      BakerConstants.Program, name, this.GetDelegateType(), 
      this.Expression));

  this.CreateAssembly(name, cscFileName);

  return Assembly.LoadFrom(name + ".dll").GetType(name)
    .GetField("func").GetValue(null) as Expression<TDelegate>;
}

This method takes the given expression (stored in the Expression property) and puts
it into a .cs file, which contains code that looks like this:
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public const string Program =
  @"using System;using System.Linq.Expressions;
  public static class {0}{{
  public static readonly Expression<{1}> func = {2};}}";

Once the file is saved to disk, CreateAssembly() creates a new DLL via the C# compiler:

private void CreateAssembly(string name, string cscFileName)
{
  var startInformation = new ProcessStartInfo("csc");
  startInformation.CreateNoWindow = true;
  startInformation.Arguments = string.Format(
    CultureInfo.CurrentCulture,
    BakerConstants.CscArguments, name, cscFileName);
  startInformation.RedirectStandardOutput = true;
  startInformation.UseShellExecute = false;

  var csc = Process.Start(startInformation);
  csc.WaitForExit();
}

Now that you have an assembly, you can easily find the expression in the read-only
field with a little bit of reflection magic, which is what the last line of code in Bake()
does. It’s a little bit of a hack, but hey, if the compiler already has all the logic to parse
an expression, why not reuse that code?

Figure 6.10 Watching expressions evolve. The graph shows the base line with the 
current best-evolved expression. In this case, you can’t see a difference, and that’s 
a good thing!
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NOTE Admittedly, although the Baker class provides the functionality needed
to compile an expression at runtime, it’s clunky and feels hackish. In chapter 10,
you’ll see how Project Roslyn makes the compiler easily accessible at runtime.
You may want to come back to this section and rewrite the Baker class using
Project Roslyn’s compiler API once you’re done with chapter 10.

Again, there’s more code to ExpressionEvolver than what’s shown in this chapter.
But let’s see what happens when you run the code.

RUNNING THE CODE

You have everything in place. Mutating expressions, parsing expressions and so on.
Now it’s time to run the application. Figure 6.10 shows what the application looks like
when it runs. You can see two lines: one is the target, and the other is the best-evolved
expression in the current generation.  

 The resulting expression doesn’t look much like the given expression, but that’s
exactly the point. The GA doesn’t know what that original expression is, but it’s still
able to come up with an expression that matches the original line well. 

Reducing expressions
One artifact of using tree-based structures in a GA is the notion of bloat. Bloat is when
the trees start growing out of hand during the evolutionary process. This is something
that we’ve seen in ExpressionEvolver. For example, starting with a data set that was
generated from this expression

a => (2 * Math.Pow(a, 4)) - (11 * Math.Pow(a, 3)) - 
  (6 * Math.Pow(a, 2)) + (64 * a) + 32

yielded the following acceptable result:

a => (((((-1 * a) - a) * ((-1 * a) - a)) * 
  (((-1 * a) - a) - a)) + 
  (((((-1 * a) - a) * (-1 * a)) * 
  (-1 * a)) * (-1 * a)))

Even though the graphs are similar, the expressions don’t look anything alike, until
you do some symbolic reduction on the result:

a => (2 * Math.Pow(a, 4)) - (12 * Math.Pow(a, 3))

Having an expression that’s smaller would help in reducing some of the memory con-
sumption we’ve seen while executing ExpressionEvolver.

There’s a Reduce() method in the Expression class, but that has nothing to do
with mathematical symbolic reduction. It would be nice if there were a library out
there to do this kind of reduction on .NET expressions. The closest we’ve found is
WolframAlpha (http://alpha.wolfram.com), which is what we used to reduce the pre-
vious result. But although an API is available, finding the result would require a
web service call. That’s not too bad, but we’d have to be careful not to reduce
every expression after every generation. Having an engine in-process would be a
better alternative.

http://alpha.wolfram.com
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You’ve now seen how to use expressions that can create programs better than existing
programs. That’s quite a powerful example of metaprogramming in action!

6.5 Summary
In this chapter, you learned how to create and modify expressions, the differ-
ences between expressions and dynamic methods, and how to use expressions to
evolve code.

 In the next chapter, you’ll see how to write succinct code that’s augmented after
the compiler process. Rather than waiting until runtime to generate code, a parser is
used to examine an assembly and change its contents based on the existence of meta-
data or a coding convention.



Generating code
with IL rewriting
Throughout part 2 (beginning in chapter 3) you’ve seen a number of techniques
and frameworks that you can use to generate code at various stages of execution.
But there’s one area of code execution that we’ve not yet addressed. It’s after com-
pilation, when your code has been turned into IL that’s stored in an assembly. At
that point, your code is in a format that the CLR uses to run your code, and most
developers think the assembly is frozen at that point—that it can’t be changed. But
that’s not the case!

 In this chapter, you’ll see how to rewrite assemblies to inject common code aspects
or to add instrumentation to code. You’ll understand the benefits of code injection
and what libraries you’ll need to use to pull off this technique. By the end, you’ll
have a powerful tool in your metaprogramming toolkit that will allow you to parcel
small, reusable code concepts across multiple applications. The result is code that
looks lean, yet contains all the implementations you want.

 As always, we start with an explanation of the benefits of injecting code.

This chapter covers
■ The benefits of code rewriting
■ Using libraries to rewrite assemblies
■ Debugging injected code
199
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7.1 The case for code injection
Before we dive into the details of IL rewriting, let’s start with a couple of examples that
illustrate the need to rewrite assemblies: reducing recurring implementations and
restructuring code flow.

7.1.1 Repeated implementations of coding patterns
It’s common in software development to run across implementations in code that are
repeated in the application, yet don’t follow common idioms to support that duplica-
tion. The ToString() example, used in numerous places in this book to demonstrate
metaprogramming ideas, is an easy example. You could copy-and-paste a hard-coded
example into each class that you want to have the same ToString() pattern results.
You could also use reflection, Reflection.Emit, or expressions to create this implemen-
tation at runtime. But getting the best of both worlds would be the way to go. The fol-
lowing code snippet is a hint of things to come in section 7.2. You add an attribute to
your code, and the implementation is injected into the assembly:

[ToString]
public sealed class AttributedCustomer : Customer
{
  // ...
}

You don’t have to be concerned about how ToString() is created, nor do you have to
wait until execution time for this code to be created. All you care about is that some-
thing during the compilation process implements it in a standardized way.

 Another well-known example is tracing. Let’s say you wanted to trace a method
when it was invoked, when it was finished, and when an exception was thrown. You’d
probably want to include method arguments as well to give you more information
when you went through the tracing logs. The following code listing shows a hard-
coded example of tracing a method with these patterns in place.

public static int Divide(int x, int y)
{
  Console.Out.WriteLine("Divide started");

  Console.Out.WriteLine("x = " + x);
  Console.Out.WriteLine("y = " + y);

  if(y == 0)
  {
    Console.Out.WriteLine("Divide threw an ArgumentException");
    throw new ArgumentException();
  }

  var result = x / y;
  Console.Out.WriteLine("Divide finished - return = " + result);

  return result;
}

Listing 7.1 Tracing the execution of a method
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This is verbose and provides a lot of detail, but there are a couple of issues with this
approach. For one, you need to manually include this pattern in every method you
want to have it. It’s not hard to do, but it’s easy to make a small mistake. What if the
parameters were reference types and not value types? Or what if you forget to include
a parameter value? You’d also have to make a check to make sure tracing their values
wouldn’t cause an exception, which would be a possibility with reference types.

 Another issue is code bloat. This code is always compiled into your assembly,
whether or not you need the tracing. Typically, you only need tracing to debug prob-
lematic issues—you don’t want to include it in production builds. But unless you’re
willing to add numerous conditional compilation statements, you’re stuck with keep-
ing the code in.

 Wouldn’t it be nice to have code like this?

[Trace]
public static int Divide(int x, int y)
{
  if(y == 0)
  {
    throw new ArgumentException();
  }

  return x / y;
}

That’s much cleaner. You let a dynamic code injection process figure out what to
add in the method to trace it based on the existence of the attribute (or some other
configuration-based approach), and you can focus on your implementation.

7.1.2 Code restructuring (Code Contracts)

Another trick you can do with rewriting is moving the code around to support a spe-
cific coding approach. This is illustrated with the introduction of design-by-contract
into the .NET framework via Code Contracts. Design-by-contract is a way for develop-
ers to specify pre- and postconditions in methods along with object invariants in
objects. The following code snippet shows a method that requires that the given id
can’t be zero and that the return value is non-null:

public static Customer Create(uint id)
{
  Contract.Requires(
    id > 0, "The ID must be greater than zero.");
  Contract.Ensures(Contract.Result<Customer>() != null);

  return new Customer(id);
}

The Contract.Requires() call handles the precondition (the id parameter must be
non-zero) and the Contract.Ensures() enforces the postcondition that the return
value will be non-null. What may seem a bit odd is that the postcondition comes
before the return call. How is this code going to make that guarantee?
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 It’s done through a bit of code rewriting magic. Because Code Contracts is only an
API and isn’t supported in languages like C# or VB via keywords, you must install a tool
in Visual Studio to rewrite the IL flow in the method after the compiler has done its
job. Once that’s done, the code flow changes (if you’d follow it in the debugger) from

■ Opening curly brace
■ Return
■ Closing curly brace

to
■ Contract.Requires
■ Opening curly brace
■ Return
■ Closing curly brace
■ Contract.Ensures

Even though this still seems like the method “returns” a value before the postcondi-
tion is evaluated, it doesn’t. You need to ensure the postcondition is correct before the
method returns. But you can’t put any code after the return statement—the C# com-
piler won’t allow it. Therefore, the Code Contract developers wrote their tool to
rewrite the execution of code such that the code executes correctly, but it looks like
the return statement is “evaluated” first, and then the postcondition is executed. As
you can guess, the care it takes to rewrite code flow without disrupting the developer’s
original intentions isn’t trivial.

 Thankfully, all the code rewriting is handled for you by the Code Contracts tools.
You don’t have to think about how it’s done; you write your code and let the tools do
their post-compilation magic. This rewriting magic, done correctly, can give a devel-
oper a powerful piece of machinery to revamp implementations to his or her liking,
and you’ll see in the next section how you can pull it off.

TIP If you’ve never run into the concept of design-by-contract before and
you’d like to learn more, there are two places you should visit. One is the
official site from Microsoft: http://research.microsoft.com/en-us/projects/
contracts/. The Code Contracts are built into the 4.0 version of the .NET
Framework (under System.Diagnostics.Contracts), but you need the
rewriting tools from that site to get the full effect. The other resource is a
series of articles written by one of us (Kevin). You can find those at http://
mng.bz/04zB. 

Now that you’ve seen a couple of scenarios where code modification in an assembly is
useful, let’s see how you can do this yourself. It’s not going to be an easy ride because
there’s nothing in the stock set of tools and libraries that you get in the .NET 4.0
Framework that handles this, so you’re going to have to roll your own. As you’ll see,
though, there are libraries out there to make the task easier to achieve. 

http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://mng.bz/04zB
http://mng.bz/04zB
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7.2 Creating an injection framework
It may sound like an appealing, powerful idea—having the ability to restructure your
code once the compiler is done. But there’s a catch. The .NET Framework doesn’t ship
with the ability to support this endeavor. Therefore, you need to come up with a way on
your own. Although it won’t be easy, a framework called Cecil has the functionality you
need. This section covers Cecil and shows how you can use it to rewrite assemblies. 

7.2.1 What’s Cecil?

Throughout this book, you’ve seen powerful examples of metaprogramming that use
various classes in .NET. But reflection in .NET doesn’t have enough power to modify
existing code. Here’s why. First, reflection reads the contents of an assembly and
allows you to invoke assembly members. But you can’t change the contents of a method
or a class; you can only use it as is. The Emitter API gets you one step closer by giving
you the ability to create code on-the-fly, but you can’t edit existing code in assemblies.
What you need is a combination of both: to read the contents of an assembly and
modify it. Fortunately, there’s another way to pull this off.

 Cecil is an assembly that’s part of the Mono project (www.mono-project.com). It
allows you to read and write assemblies and debug files. You can get the source code
for Cecil at www.mono-project.com/Cecil. Cecil is also available on NuGet, so you can
easily reference it in your projects. Cecil is used on a number of Mono-related proj-
ects, such as Gendarme (www.mono-project.com/Gendarme), a static analysis tool.

 The next section delves deep into the Cecil API to reveal how Cecil enables
code weaving.

7.2.2 Weaving code with Cecil

To see how Cecil works, we’re going to use the Injectors project, which was created by
one of the authors (Jason). You can find the source code at http://injectors.code-
plex.com. This project uses Cecil to read the contents of an assembly and change spe-
cific parts based on the existence of metadata. Once all the changes have been made,
the assembly is saved back to disk. Figure 7.1 gives a high-level picture of the process
Injectors takes to change an assembly.

 Because Cecil isn’t an assembly that comes with .NET, you’ll have to spend time get-
ting familiar with a new API. But as you’ll discover, Cecil isn’t too hard to pick up once
you get past some of the initial steps. Let’s start by looking at how assemblies are
loaded and saved in Cecil.

Figure 7.1 Modifying an assembly with the 
Injectors framework. All changes to a loaded 
assembly are saved back to the same assembly.

www.mono-project.com
www.mono-project.com/Cecil
www.mono-project.com/Gendarme
http://injectors.codeplex.com
http://injectors.codeplex.com
http://injectors.codeplex.com
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NOTE It would be somewhat easier if we could point you to an API that
already exists in .NET that handles assembly parsing and code rewriting, but
we can’t. Thankfully, the .NET developer community has a number of options
you can choose from to do this. We’ve picked Cecil for this book, but we
highly encourage you to look at CCI (http://ccimetadata.codeplex.com),
IKVM (www.ikvm.net), and Tao (https://github.com/philiplaureano/Tao), to
name a few. 

LOADING AND SAVING ASSEMBLIES WITH CECIL

To run any code that will change the contents of an assembly, first you must load the
target assembly, change it, and save the alterations back to disk. This is pretty easy to
do in Cecil:

public static class InjectorRunner
{
  public static void Run(FileSystemInfo assemblyLocation)
  {
    var assembly = AssemblyDefinition.ReadAssembly(
      assemblyLocation.FullName);
    assembly.Inject();
    assembly.Write(assemblyLocation.FullName);
  }
}

The AssemblyDefinition class provides a ReadAssembly() method, which you use to
load the contents of that assembly. The Inject() method is an extension method pro-
vided by the Injectors framework—you’ll see how it works in the next section. Once
the changes are done, you call Write() on that assembly.

 As you can see, loading and saving assemblies in Cecil is pretty straightforward.
The challenge is changing the contents. You’ll see how to do that in the next section.

VISITING ASSEMBLY CONTENTS

Cecil doesn’t provide a mechanism to visit the entire contents of an assembly, so you
have to create your own. The Injectors framework has a number of extension methods
to visit a specific member and inject it with code modifications if needed. Here’s what
the Inject() method looks like for an AssemblyDefinition:

internal static class AssemblyDefinitionExtensions
{
  internal static void Inject(
    this AssemblyDefinition @this)
  {
    @this.RunInjectors();

    foreach(var module in @this.Modules)
    {
      module.Inject();
    }
  }
}

www.ikvm.net
http://ccimetadata.codeplex.com
https://github.com/philiplaureano/Tao
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The RunInjectors() extension method examines the current member to see if it’s
marked with any injector attributes that will modify the assembly. You’ll see the defini-
tion of InjectorAttribute in the “Executing injectors” section. The key point is that
once the AssemblyDefinition has been examined, all the modules in the assembly
are injected. In each module, all the types are injected—and so on all the way down to
a parameter in a method. All the other extension methods for the other members fol-
low this pattern.

 With these extension methods in place, the entire assembly is visited and injected
with modifications. You need a way to mark code with attributes that will change the
content. In the next section, you’ll see how you can use a bit of IL to create a generic
attribute that’ll be useful in not only defining metadata but also in being extensible
for other Cecil members.

DEFINING THE INJECTORATTRIBUTE

In languages like C# and VB, you can define attributes that inherit from the
Attribute class. But you can’t make your custom attributes generic. You can’t
write code like this:

public sealed class MyCustomAttribute<T> : Attribute

This is purely a language restriction. The CLR supports generic attributes, but C# and
VB don’t allow it—much as you can overload methods by return type only in IL, but
not in C# and VB. This would be beneficial because you could make a custom generic
attribute that could be used for any Cecil-based member, such as TypeDefinition
or MethodDefinition. But if you’re willing to write a little IL, you can define a
generic attribute.

 It’s not as hard as you think. The trick is to write your attribute in your favorite
.NET language, then tweak it in IL. Start by writing the attribute:

public class InjectorAttribute : Attribute
{
  public InjectorAttribute
    : base() { }

  public void Inject(object target)
  {
    if(target == null)
     {
       throw new ArgumentNullException("target");
     }

    this.OnInject(target);
  }

  protected abstract void Inject(object target);
}

Then compile the code, open up the assembly in ILDasm, and dump the contents to a
text file. In the text file, you can then make the attribute generic. Three spots need to
be changed. The first is the class definition: 
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.class public abstract auto ansi beforefieldinit 
  Injectors.Core.Attributes.Generic.InjectorAttribute`1<class T>
    extends [mscorlib]System.Attribute

Now that the class is generic, you can use T in Inject() and OnInject():

.method public hidebysig instance void 
  Inject(!T target) cil managed

.method family hidebysig newslot abstract virtual 
  instance void OnInject(!T target) cil managed { }

Note how the parameters are now generic, so you can pass in whatever specific type
you want. In the next section, you’ll see how this attribute is discovered and executed.

EXECUTING INJECTORS

In the “Visiting assembly contents” section, you saw RunInjectors() called in the
Inject() extension method. Now that you have the custom attribute defined, you can
see how these attributes are handled:

internal static void RunInjectors<T>(this T @this)
  where T : class, ICustomAttributeProvider
{
  var injectors = @this.GetInjectors();

  foreach(var injector in injectors)
  {
    injector.Inject(@this);
  }
}

In Cecil, each definition class (like AssemblyDefinition and MethodReturnType-
Extensions) implements the ICustomAttributeProvider interface, which defines
the CustomAttributes property. This is a collection of attributes on the given mem-
ber, which is what you need to use to find InjectorAttribute-based attributes. But
InjectorAttribute doesn’t have a generic constraint on T for ICustomAttribute-
Provider, so that’s why the constraint is done here.

 GetInjectors() returns a list of InjectorAttribute-based objects. The following
listing shows what that method does.

internal static ReadOnlyCollection<InjectorAttribute<T>> 
  GetInjectors<T>(this T @this) 
  where T : class, ICustomAttributeProvider
{
  var injectors = new List<InjectorAttribute<T>>();

  foreach(var attribute in @this.CustomAttributes)
  {
    var baseAttributeType = 
       attribute.AttributeType.Resolve().BaseType.Resolve();

    while(baseAttributeType != null && 
       baseAttributeType.BaseType != null)

Listing 7.2 Getting a list of injectors from a member
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    {
      if(baseAttributeType.FullName == 
         ICustomAttributeProviderExtensions.baseFullName &&
        baseAttributeType.Scope.Name == 
             ICustomAttributeProviderExtensions.baseScopeName)
      {
        var injectorAttribute = 
              attribute.Create<InjectorAttribute<T>>();
        injectors.Add(injectorAttribute);
        break;
      }

      baseAttributeType = baseAttributeType.BaseType.Resolve();
    }
  }

  return injectors.AsReadOnly();
} 

In Cecil, there’s no IsAssignableFrom method like you get in the Reflection API.
You’d like that so you could find the specific attributes in the CustomAttribute prop-
erty that derive from InjectorAttribute<T>. But you’re left with writing a while loop
and looking at the BaseType to see if it matches the name for InjectorAttribute<T>.
If it does, you create an instance of the attribute and add it to the collection. The
Create() extension method is provided in the following listing.

internal static T Create<T>(this CustomAttribute @this) 
  where T : class
{
  var type = @this.AttributeType.Resolve();
  var attributeTypeName = type.FullName + ", " + 
    type.Module.Assembly.Name.Name;
  var attributeType = Type.GetType(attributeTypeName);

  object[] arguments = null;

  if(@this.HasConstructorArguments)                            
  {                                                            
    arguments = new object[@this.ConstructorArguments.Count];  
                                                               
    for(var i = 0; i < @this.ConstructorArguments.Count; i++)  
    {                                                          
      arguments[i] = @this.ConstructorArguments[i].Value;      
    }                                                          
  }                                                            

  T value = Activator.CreateInstance(           
    attributeType, arguments) as T;             

  if(@this.HasProperties)                                     
  {                                                           
    foreach(var attributeProperty in @this.Properties)        
    {                                                         
      attributeType.GetProperty(attributeProperty.Name)       

Listing 7.3 Creating an attribute in Cecil
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        .SetValue(value,                                      
        attributeProperty.Argument.Value, null);              
    }                                                         
  }                                                           

  return value;
}

It’s not the easiest thing in the world to create the attribute object either; you can’t use
Activator.CreateInstance(). The first thing you need to do is find the constructor
arguments, if any exist B. These values need to be provided to CreateInstance() to
ensure you’re creating the object in the correct state c. You also need to set any property
values if the attribute was defined using named properties. Each of those values needs to
be set via a GetProperty() call d. Once the attribute object is in the correct state with the
right data, it’s returned, where the Inject() method is called in RunInjectors().

 At this point, you’ve seen the core architecture of injectors. Although some of
Cecil’s API may be unfamiliar to you, if you’ve used the Reflection API, you’ll see a fair
amount of analogies between classes in terms of their logical use (for example, Method-
Info and MethodDefinition). To close the discussion, let’s go through a simple injec-
tor to see how you can add null checks to argument methods.

CREATING THE NOTNULLATTRIBUTE

Checking reference-based method arguments to see if they’re null is a common idiom
in .NET. Good code should throw an ArgumentNullException if an argument was pro-
vided as null, rather than waiting for the .NET runtime to throw the NullReference-
Exception for you if you try to use it in any way. ArgumentNullException can provide
more information (such as the parameter name), whereas NullReferenceException
isn’t related to a parameter in any way.

 Now, making the null check involves straightforward, boilerplate code:

public void AMethod(string value)
{
  if(value == null)
  {
    throw new ArgumentNullException("value");
  }
}

As you can see, it’s pretty easy to do. The point is that it’s simple, yet tedious code. You
have to write the if block that throws the exception with the right parameter name
every single time. It would be far easier if you could let something else—like an injec-
tor—write that for you. The following listing demonstrates the NotNullAttribute and
how it injects the IL to handle this check.

[AttributeUsage(AttributeTargets.Parameter, 
  AllowMultiple = false, Inherited = true)]
[Serializable]
public sealed class NotNullAttribute : 

Listing 7.4 Adding a non-null check
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Get refe
Ar

NullE
con
  InjectorAttribute<ParameterDefinition>
{
  protected override void OnInject(ParameterDefinition target)
  {
    if(!target.ParameterType.IsValueType)                    
    {
      var method = (target.Method as MethodDefinition);           
      var argumentNullExceptionCtor =                             
         method.DeclaringType.Module.Assembly.MainModule.Import(  
        typeof(ArgumentNullException).GetConstructor(             
              new Type[] { typeof(string) }));                    

      var processor = method.Body.GetILProcessor();     
      var first = processor.Body.Instructions[0];       

      processor.InsertBefore(first,                         
         processor.Create(OpCodes.Ldarg, target));          
      processor.InsertBefore(first,                         
         processor.Create(OpCodes.Brtrue_S, first));        
      processor.InsertBefore(first,                         
         processor.Create(OpCodes.Ldstr, target.Name));     
      processor.InsertBefore(first,                         
         processor.Create(OpCodes.Newobj,                   
         argumentNullExceptionCtor));                       
      processor.InsertBefore(first,                         
         processor.Create(OpCodes.Throw));                  
    }
  }
}

The first thing you need to do is make sure that the parameter the attribute is on is a
reference type and not a valid type via the IsValueType property, because there’s no
way to specify via an attribute that it can only be on one or the other B. This is valid
code:

public void AMethod([NotNull] string value1, [NotNull] Guid value2)

There’s no reason to emit code for value2 because it will always be non-null.
 Once you know the parameter is a reference type, you can start emitting the non-

null check. You need to get a reference to the ArgumentNullException’s constructor
that takes one argument because you’ll use that in the IL you’re going to emit, which
is what the Import() call is for c. Next, you get an ILProcessor reference, which is
similar to the ILGenerator class in Reflection.Emit in that you can add opcodes to the
method d. But it’s more flexible because you can pick an instruction and add new
instructions before or after it, which isn’t possible with ILGenerator. In this case, you
need to make sure the non-null check occurs before any other code in the method
happens, so you find the first instruction and insert all of opcodes before it e.

 The five opcodes you use work this way:

■ Ldarg—Put the target parameter on the stack.
■ Brtrue_S—If it’s non-null, skip to the rest of the code in the method.
■ Ldstr—Put the parameter name on the stack.
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■ Newobj—Create a new ArgumentNullException, which will use the parameter
on the stack to construct it.

■ Throw—Throw the exception.

That’s it. You now have a way to add an attribute to your code that will make this non-null
check for you the same way every time (and it’ll always get the parameter name right!).

 Attributes don’t do anything on their own. You need something to kick-start the injec-
tion process on your assembly. In the next section, you’ll see how you can get the
Injectors framework executed in your projects via a custom MSBuild task.

7.2.3 Creating an MSBuild task

MSBuild is an XML-based build platform
that’s used to orchestrate numerous tasks
that occur in a build process. There are a
number of predefined tasks that you can
use in an MSBuild file, such as <Exec> (to
run an executable). You can also create
your own custom tasks. Interestingly, the
Visual Studio project files for C# and VB use the MSBuild format as well, which
makes it ideal to create a custom injector task that you could use to add post-build
assembly modification to a VS project. Figure 7.2 illustrates where the task comes
into play in an MSBuild file.

 First, create the custom task. As the following listing shows, doing so is quite simple.

using Injectors.Core;
using Microsoft.Build.Framework;
using Microsoft.Build.Utilities;
using System.Diagnostics;
using System.IO;

namespace Injectors.Task
{
  public sealed class InjectorTask : AppDomainIsolatedTask
  {
    public override bool Execute()
    {
      Log.LogMessage("Injecting assembly {0}...", 
         this.AssemblyLocation);
      var stopwatch = Stopwatch.StartNew();
      InjectorRunner.Run(new FileInfo(this.AssemblyLocation));
      stopwatch.Stop();
      Log.LogMessage(
         "Assembly injection for {0} complete - total time: {1}.",
        this.AssemblyLocation, stopwatch.Elapsed.ToString());
      return true;
    }

Listing 7.5 Creating a custom MSBuild task for injection

Figure 7.2 At some point in an MSBuild file, a 
compiler is run. Once that task is finished, the 
InjectorTask runs to modify the new 
assembly via Injectors. 
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    [Required]
    public string AssemblyLocation { get; set; }
  }
}

To create a custom task, you need your class to derive from ITask. The helper class
AppDomainIsolatedTask does this for you; the only method you need to handle is
Execute(), which is where you’ll define your custom task’s logic. Note that you can
also create properties, such as AssemblyLocation, that users of the custom task can set
to specify pieces of information your task will need (you’ll see shortly how to use this
task in an MSBuild file).

NOTE You need to reference the Microsoft.Build.Framework and Micro-
soft.Build.Utilities.v4.0 assemblies to create custom tasks.

As you can see in InjectorTask, all Execute() does is call Run() on InjectorRunner,
sprinkling in debugging statements before and after the call. Add this task to your
MSBuild file so it will execute it correctly:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" DefaultTargets="Build" 
  xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <UsingTask TaskName="Injectors.Task.InjectorTask" 
    AssemblyFile="Injectors.Task.dll"/>
  <!-- Other build elements go here... -->
</Project>

The <UsingTask> element lets you specify an assembly that contains a custom MSBuild
task. Once you add this element, you can reference the task anywhere in the MSBuild file:

<InjectorTask AssemblyLocation="Injectors.SampleTarget.exe" />

Set the AssemblyLocation property in the <InjectorTask> element, which will be
done before Execute() is called on the custom task.

 Getting this set up with a simple MSBuild file is pretty easy. Because C# and VB pro-
ject files are MSBuild files, you can add this custom injection task to your own projects.
You do that by either editing the project file manually outside of VS or unloading the
project within VS and doing it there. To edit the file in VS, right-click the project and
select Unload Project from the context menu. Then, right-click the project again
and select Edit {project name}.{project file}. That will show the file contents in VS.
(Remember to right-click and Reload Project to get the project loaded again in the
solution). Whatever approach you use to edit the project file, you want to find this sec-
tion of XML:

<Target Name="AfterBuild">
</Target>

Put the <InjectorTask> element within the <Target> element. If you can’t find it in
the project file, add the element within the <Project> element. Also, this element
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may be wrapped in an XML comment, so remove the comment first. Once you’ve
done that, your code modifications will occur after the project is built.

 Up to this point, you’ve seen how to use Cecil to modify an assembly. In the next
section, you’ll see how you can enhance these modifications by adding debugging
symbols. This enhancement will give the developer an indication during a debugging
session that code has been changed. 

7.3 Debugging injected code
Cecil gives you a lot of power to change assemblies in all sorts of ways. But some of
these changes can leave developers scratching their heads, wondering why they’re get-
ting the behaviors they’re seeing. In this section, you’ll see how you can add debug-
ging support to your modified assemblies.

7.3.1 Clearing up debugging confusion
To see how the simple NotNullAttribute can raise a developer’s eyebrows, look at the
following code:

public class SomeClass
{
  public SomeClass([NotNull] string data)
  {
    this.Data = data;
  }

  public string Data { get; set; }
}

Now, let’s say a developer was using this code like this:

var data = new SomeClass(null);

Nowhere in the code is there any explicit “throw new ArgumentNullException” line
of code. Sure, there’s a [NotNull] attribute next to the data argument, but when users
try to debug this code, all they’re going to get is a dialog box telling them that the
exception has been thrown. But from where? Where did it come from?

 What would be better is to alter the program debug file (.pdb) and change the assem-
bly such that the developer would see that the NotNullAttribute did something. For
example, having the “NotNull” text be highlighted in the debugger when the five
opcodes are executed would be a great visual indicator during a debugging session.

 Fortunately, Cecil has support to read debug information along with letting you edit it
as well. Let’s see how you can add debugging support for the NotNullAttribute.

7.3.2 Loading and saving debug information

The first thing you need to find is the PDB file that contains all the debugging symbol
information. Keep in mind that you may not always have this. It’s perfectly legal for a
compiler to not create any debugging information during compilation, or maybe the
PDB wasn’t shipped with the assembly you’re trying to modify. Therefore, the techniques
shown in section 7.3 have to be defensive, because you may not have any debugging
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information available. To load the debug symbols, you need to change your code that
loads the assembly:

var assembly = AssemblyDefinition.ReadAssembly(assemblyLocation.FullName,
     new ReaderParameters { ReadSymbols = true });

Include a ReaderParameters object to ReadAssembly(), with the ReadSymbols prop-
erty set to true. Note that if you try to load an assembly this way, and Cecil can’t find a
PDB file, you’ll get a FileNotFoundException, so you need to include a try-catch
block to handle this expected exception.

 You also need to save the file with debugging information if you want to preserve
any changes you’ve made during the assembly modification process:

assembly.Write(assemblyLocation.FullName,
  new WriterParameters() { WriteSymbols = true });

7.3.3 Issues with adding debugging information

Once you have debug symbols loaded, you can read existing symbol information as
well as add new symbols. But before you start adding debugging information, knowing
when it’s possible to add it is important.

 One issue is performing a code modification where there was no code to begin
with. PDB files only contain information that relates to code that executes. Specifically,
a PDB file doesn’t contain full assembly information, like type names. It only knows
that a particular opcode relates to some chunk of text in a code file. Therefore, if you
add code to an assembly, you may not be able to add the symbols because you’ll never
know where the code file is.

 Let’s look at a specific example. In the Injectors project, there’s another attribute
called ToStringAttribute, which adds a ToString() method to a class that follows
the format convention shown in chapters 2 and 4. You add it to a class like this:

[ToString]
public class MyClass { }

If ToString has not been defined on MyClass, the attribute will inject a new ToString
method into the class. But note that MyClass never had ToString() overridden.
Therefore, if a PDB was created at runtime, there won’t be any information about a
MyClass.cs file that you can find. It’s possible that you could extend a code weaver like
Injectors to get code file information during its execution, in particular if you’re run-
ning it in VS after every project is run, but in general a PDB file doesn’t always have the
code file information you’re looking for.

 Another issue is parsing code. As you’ll see in the next section, you need to find
the exact section in code where the “NotNull” or “NotNullAttribute” text shows up
for the parameter you found that has this metadata associated with it. At first glance,
this may not seem that hard, but there are always the edge cases that bite you. Usually
when you add an attribute to a property in C#, you’ll see it like this:

public void AMethod([NotNull] string value)
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However, the following chunk of code is perfectly valid C# as well:

public void AMethod([NotNull]
  string value)

Surprisingly, this is legal too:

public void AMethod([
  NotNull
  ] string value)

Also, remember multiple properties may have NotNullAttribute on them, and the
parameters may have other custom attribute defined on them as well:

public void AMethod([NotNull, MoreInformation] string value,
  [NotNull] string data)

Again, PDB files are all about the executable code parts in an assembly. It may know
what file contains the code you’re looking for, but you’re on your own trying to figure
out any more information in the code file. Fortunately, there’s a way out of this pars-
ing mess such that you don’t have to write a parser.

 There’s an OSS IDE tool in the .NET community called SharpDevelop
(www.sharpdevelop.com). Because it’s an IDE to develop .NET-based applications,
it needs to be able to parse code in the IDE to provide features like IntelliSense.
Fortunately, this parsing code is shipped as a separate assembly with Sharp-
Develop, called ICSharpCode.NRefactory.dll. In the next section, you’ll see how
you can use this assembly to make finding the code you’re looking for in a given
file painless.

TIP You can get NRefactory from Nuget: www.nuget.org/packages/ICSharp-
Code.NRefactory.

7.3.4 Adding debugging information for injected code
Now that you’ve seen why modifying the PDB file with new information will aid a
developer during the debugging process and how you can address the parsing issue,
let’s see how you can do it.

DEFINING A PARSING CLASS

First, find out if you can add debugging information. Let’s change the IL weaving
code in OnInject() for NotNullAttribute a bit:

var processor = method.Body.GetILProcessor();
var first = processor.Body.Instructions[0];
var ldArgInstruction = processor.Create(OpCodes.Ldarg, target);
ldArgInstruction.SequencePoint = 
  new NotNullAttributeParser(method, target).SequencePoint;
processor.InsertBefore(first, ldArgInstruction);

You need to handle the first instruction differently than the other four. You set
its SequencePoint property to a SequencePoint object, which contains debugging

www.sharpdevelop.com
www.nuget.org/packages/ICSharpCode.NRefactory
www.nuget.org/packages/ICSharpCode.NRefactory


215Debugging injected code
information, such as the starting and ending lines that the debugger should highlight
when this opcode is hit.

 The NotNullAttributeDebugger is a class that contains the code needed to add
debugging information. The following listing shows how the constructor sets its
SequencePoint property. 

internal sealed class NotNullAttributeDebugger
{
  internal NotNullAttributeDebugger(
    MethodDefinition method, ParameterDefinition target)
  {
    this.SetPoint(method, target);
  }

  private void SetPoint(
    MethodDefinition method, ParameterDefinition target)
  {
    var point = method.FindSequencePoint();

    if(point != null)
    {
      using(var parser = ParserFactory.CreateParser(
        point.Document.Url))
      {
        parser.Parse();

        if(parser.Errors.Count <= 0)
        {
          var visitor = new NotNullAttributeVisitor(
            point.Document, method, target);
          parser.CompilationUnit.AcceptVisitor(
            visitor, null);
          this.SequencePoint = visitor.SequencePoint;
        }
      }
    }
  }

  internal SequencePoint SequencePoint { get; private set; }

The FindSequencePoint() extension method will return the first SequencePoint
object it found in the MethodDefinition’s Instruction collection. You need a
SequencePoint because it contains information about the location of the code file
related to this method. If you find a SequencePoint object, then an IParser-based
object is created via the CreateParser() method from the NRefactory ParserFactory
class. The code file is contained in the Uri property of the SequencePoint’s Document
property. If the Parse() call didn’t find any errors, a NotNullAttributeVisitor
object is created, which is passed to the parser. This is a nested class defined within
NotNullAttributeDebugger, which is why there isn’t a closing curly brace in this code

Listing 7.6 Creating an NRefactory parser 
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snippet. (You’ll see how this visitor objects works in the next section.) The SetPoint()
method will either set the SequencePoint property on the NotNullAttributeDebugger
object with a new SequencePoint object or a null reference. In the next section, you’ll
see how the right portion of “non-null” code is found.

FINDING THE RIGHT ATTRIBUTE

In the last section, you saw that a visitor object was passed to AcceptVisitor().
The NotNullAttributeVisitor derives from an abstract class called AbstractAst-
Visitor. This class contains a bunch of “VisitXYZ” methods that you can override
to find specific parts in a code file, like a type or method definition. In this case,
you need to find a method with the same name as the method you’re currently
looking at in the Injectors framework and then find the parameter with the same
name that has the NotNullAttribute defined on it. NRefactory makes this sim-
ple. Let’s look at the definition of this class and the two methods you need to
override to look for methods. The following code listing defines the definition of
this custom visitor.

using NR = ICSharpCode.NRefactory.Ast;

// ...

private sealed class NotNullAttributeVisitor : AbstractAstVisitor
{
  internal NotNullAttributeVisitor(
    Document document, MethodDefinition method, 
     ParameterDefinition target)
  {
    this.Document = document;
    this.Method = method;
    this.Parameter = target;
  }

  public override object VisitConstructorDeclaration(
    NR.ConstructorDeclaration constructorDeclaration, 
     object data)
  {
    this.VisitParametrizedNode(constructorDeclaration, true);
    return base.VisitConstructorDeclaration(
       constructorDeclaration, data);
  }

  public override object VisitMethodDeclaration(
    NR.MethodDeclaration methodDeclaration, object data)
  {
    this.VisitParametrizedNode(methodDeclaration, false);
    return base.VisitMethodDeclaration(
       methodDeclaration, data);
  }

  private Document Document { get; set; }
  private MethodDefinition Method { get; set; }

Listing 7.7 Creating an NRefactory Visitor
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  private ParameterDefinition Parameter { get; set; }
  internal SequencePoint SequencePoint { get; private set; }

One unfortunate aspect of using NRefactory and Cecil together is that they use the
same type names in a number of cases, such as MethodDeclaration. 

 Therefore, add a using statement to qualify when you’re using a class defined from
either the NRefactory or Cecil assembly. As you can see, you only need to override two
methods, VisitConstructorDeclaration() and VisitMethodDeclaration(). Because
ConstructorDeclaration and MethodDeclaration both inherit from a base class
called ParametrizedNode that defines the members you need, that parsing code is
defined in a common method called VisitParametrizedNode(). The following code
listing shows how VisitParametrizedNode() creates the SequencePoint you need.

private void VisitParametrizedNode(
  NR.ParametrizedNode node, bool isConstructor)
{
  if(((isConstructor && this.Method.IsConstructor) ||      
    (node.Name == this.Method.Name)) &&                    
    node.Parameters.Count == this.Method.Parameters.Count) 
  {
    var doParametersMatch = true;                        
    NR.ParameterDeclarationExpression matchingParameter  
      = null;                                            

    for(var i = 0; i < node.Parameters.Count; i++)       
    {
      var parsedParameter = node.Parameters[i];          

      if(parsedParameter.ParameterName !=                
         this.Method.Parameters[i].Name)                 
      {                                                  
        doParametersMatch = false;                       
        break;                                           
      }                                                  
      else if(parsedParameter.ParameterName ==           
        this.Parameter.Name)                             
      {                                                  
        matchingParameter = parsedParameter;             
      }                                                  
    }                                                    

    if(doParametersMatch && matchingParameter != null)
    {
      this.SequencePoint = 
        (from attributeSection in matchingParameter.Attributes  
        from attribute in attributeSection.Attributes           
        where (attribute.Name == "NotNullAttribute" ||          
          attribute.Name == "NotNull")                          
        select new SequencePoint(this.Document)                 
          {                                                     
            EndColumn = attribute.EndLocation.Column,           
            EndLine = attribute.EndLocation.Line,               

Listing 7.8 Creating a SequencePoint for the NotNullAttribute

Determine if this 
is correct method 
by name

 b

Verify 
parameters

 c

Find right 
NotNullAttribute
within the 
parameters

 d
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            StartColumn = attribute.StartLocation.Column,       
            StartLine = attribute.StartLocation.Line            
          }).Single();                                          
    }
  }
}

Check to see if the current method in the code file AST is the one Cecil found. You
have to do this verification by name, but if the method is a constructor, that name
won’t match what Cecil will call a constructor: .ctor. That’s why the name check is a lit-
tle convoluted B.

 Once you verify the method name, the next step is to check the parameter names c.
Again, all you have is a code file—you don’t have type information at that point. The
best check is to see whether the number of parameters is the same and if the names
are in the same order as what Cecil found in the assembly. If that’s true, finding the
attribute is only a LINQ statement away d. You traverse the attribute information in
the matched parameter to find the location where the “NotNull” or “NotNullAttribute”
text is. You can use that attribute’s StartLocation and EndLocation properties to cre-
ate a SequencePoint marked with the right text locations.

OBSERVING THE RESULTS

Now that you’ve added debugging support for the NotNullAttribute, what hap-
pens when you run code that uses the attribute in the debugger? Figure 7.3 shows
the results. This screenshot was taken when the method was stepped into. The
debugger correctly highlights the “NotNull” text, and now the developer has a
much better indicator that something has added code to the method that’s related
to the presence of the attribute.

 You now know how to weave code into an assembly and provide debugging sup-
port. It’s definitely not a trivial endeavor, but thankfully, due to the hard work of indi-
viduals that created and maintain Cecil and NRefactory, it’s relatively painless.

7.4 Summary
In this chapter, you learned about the need to alter implementations post-build, how
to use the Cecil framework to edit assemblies based on the existence of metadata, and
how to add debugging support for injected code with Cecil and NRefactory.

Find right 
NotNullAttribute 
within the 
parameters

 d

Figure 7.3 Adding highlighting 
to attributes. You can clearly 
see that code is associated 
with the NotNullAttribute.
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Up to this point, you’ve seen numerous metaprogramming techniques that focused
mostly on static languages, like C#. In part 3, we switch gears and introduce frame-
works and concepts that are targeted for dynamic languages like Ruby and Python.
You’ll also see how you can use other languages that have metaprogramming tech-
niques built in. Hang on—the ride’s going to get even more interesting!



 



Part 3

Languages and tools

Learning about advanced techniques to build the supporting foundations
of metaprogramming in your code is fun, but it’s also beneficial to use the hard
work of others. 

 In chapter 8 you’ll see how you can use the Dynamic Language Runtime to
support dynamic programming. 

 Discovering tools and languages that already have metaprogramming as a
primary focus of its feature set is the focus of chapter 9.

  In chapter 10, you’ll get a tour of a new compiler API from Microsoft called
Project Roslyn and what it brings to the table for developers. 





The Dynamic
Language Runtime
Ask a group of Python or JavaScript programmers what they enjoy about their lan-
guages and they’ll probably mention the term dynamic. Then ask the group what
the word means, and there will undoubtedly be a range of responses, mostly cen-
tered on the theme of flexibility. These lovers of dynamic languages typically value
flexibility and rapid development over type-safety. These priorities lead to an even
deeper question: should the classification and access of data be the responsibility of
compilers or a privilege reserved for programmers? The answer depends entirely
on the kind of problem you’re trying to solve.

 If you need extremely high performance, dynamic typing may not be the smart
choice. But if your program can decrease rigidity while increasing developer com-
prehension at the cost of a few more milliseconds here and there, dynamic typing

This chapter covers
■ The simplest dynamic classes: the 

ExpandoObject class, the DynamicObject 
class, and parsing the Open Data Protocol 
dynamically

■ The DLR hosting model: runtimes, engines, 
and scopes

■ Adding a rules engine to your application
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can be helpful. Good software architects know how to balance these kinds of con-
cerns. The desire for balance is why statically typed programming languages like C#
offer dynamic typing as an option these days: static typing for safety and performance,
and dynamic typing for when you need a bit of flexibility.

 This chapter focuses on understanding when dynamic typing might be appropri-
ate in an otherwise statically typed application. This isn’t a chapter on learning Python
or Ruby. In fact, we only touch on those languages to show how they can be integrated
into a C# program to provide scripting capabilities. We begin by studying some of the
most useful classes for creating dynamic objects in the Dynamic Language Runtime
(DLR). One skill-building example shows how to add and remove methods and prop-
erties to a class at runtime. Then we put those new skills to work, showing how you can
use the DLR to handle semistructured documents gracefully at runtime. We demon-
strate how to use the DLR’s hosting capabilities to embed a user-callable rules engine
into your application with a few lines of code. Finally, we go behind the scenes to help
you understand that the magic of dynamic programming isn’t magic at all—by explor-
ing the architecture of the DLR.

8.1 The simplest dynamic classes
There aren’t many public classes in the System.Dynamic namespace, but there are 13
classes in that namespace with the term Binder in them. Near the end of this chapter,
we look at binders and their crucial role in what the DLR calls dynamic dispatch. Of the
five remaining classes in the namespace, only two are likely to be used by the average
developer: the ExpandoObject and the DynamicObject. Both classes are useful for
metaprogramming and for writing more flexible code in general.

8.1.1 The ExpandoObject class

The DLR’s ExpandoObject has one of the funniest-sounding names in the .NET Frame-
work. For English speakers, the name of this class connotes elasticity. What kind of
stretchiness might be implied by such a name? Could the ExpandoObject be a collec-
tion class that grows automatically as you insert new items into it? In fact, the Expando-
Object is a collection. If you examine the documentation for the class, you’ll notice
that the ExpandoObject implements the interface IDictionary<string, Object>.
Code like this should be possible:

ExpandoObject elastic = new ExpandoObject();
elastic["phrase"] = "Hello, world";

But when you compile that tiny bit of code, you get an error saying that the indexer
isn’t available. Why isn’t the ExpandoObject behaving like a dictionary if it’s declared
as one? Because the ExpandoObject has implemented the dictionary interface explic-
itly. Therefore, the following modified snippet will compile:

IDictionary<string, object> flex = new ExpandoObject();
flex["phrase"] = "Hello, world!";
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As it turns out, for an explicitly declared interface, you must declare the variables by
which you intend to access the members as the specific interface type. This peculiarity
of the C# language is used most often by not-so-inventive job interviewers looking for
ways to fluster their candidates. It also happens to be a nice way to conceal an interface
implementation to a certain degree as Microsoft has done in this case. The reason for
implementing a dictionary interface at all might become apparent after studying this
next bit of code:

IDictionary<string, object> flex = new ExpandoObject();
flex["phrase"] = "Hello, world!";
Console.WriteLine(((dynamic)flex).phrase);

You may be surprised that this will compile and successfully run to emit the venerable
expression “Hello, world!” on the console window. Did you notice that in the last line
of the code snippet, there were no quotes around the word phrase? It’s being used like
a property name. How can the C# compiler allow access to a property that doesn’t
exist? The answer lies in the casting of the flex variable as dynamic and C#’s handling
of variables marked that way.

NOTE Dynamic types in C# are a bit like the bending spoon in the movie The
Matrix. As the child explains to the character Neo in that famous scene, “Do
not try to bend the spoon—that’s impossible. Instead, only try to realize the
truth: there is no spoon.” Similarly, there is no underlying type in C# that rep-
resents the dynamic keyword. If you disassemble a bit of compiled C# code
using dynamic types, you’ll see that the dynamic things are declared as System
.Object. It’s the C# compiler’s treatment of those plain old objects that
makes them behave dynamically. Don’t try to understand dynamic as a type.
Only realize the truth: there’s no dynamic type.

By now, we hope you’re beginning to grasp the connection between the Expando-
Object’s implementation of IDictionary<string, object> and the ability to access
elements of that collection as dynamic properties. This is possible because of C#’s
dynamic keyword and another DLR interface called IDynamicMetaObjectProvider.
We cover that interface and the concept of so-called metaobjects in detail later in this
chapter. For now, we’ll refer to the capability provided by that interface as dynamic
binding. It’s what adds the dynamic feeling to the C# programming language that
Python, Ruby, and JavaScript programmers have enjoyed for many years.

 The bit of code shown earlier is admittedly more awkward than it needs to be.
After all, the folks at Microsoft made it easy to get ad hoc properties out of an Expando-
Object. It should be as simple to get them into a dynamic object. The trick is to
declare the ExpandoObject as dynamic from the start, like this:

dynamic flex = new ExpandoObject();
flex.phrase = "Hello, world!";
Console.WriteLine(flex.phrase);

That’s much simpler, isn’t it? This new snippet will compile and run to produce the
same output as the last example. You no longer have to put the property name phrase
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in quotes or use the dictionary’s indexer to set the string “Hello, world!” into it.
Because the ExpandoObject is declared as dynamic, it gets dynamic treatment from
the C# compiler instead of static treatment, doing that work for you using C#’s famil-
iar syntax for accessing properties.

 This also holds true when passing objects as parameters to functions. For example,
listing 8.1 shows a function called TestBag that exercises a parameter named bag by add-
ing data and code to it dynamically. The bag parameter is declared using the dynamic
keyword, giving it special treatment by the C# compiler throughout the function.

static void TestBag(dynamic bag)
{
  bag.Listen =
    new Func<string>(() => Console.ReadLine());
  bag.Say =
    new Action<string>(s => Console.Write(s));

  bag.Say("What's your ID? ");
  bag.ID = bag.Listen();
  bag.Say("Hello, " + bag.ID + "." +
    Environment.NewLine);
}

NOTE The parameter in the TestBag function in listing 8.1 is named bag for
a reason. Classes like ExpandoObject are sometimes called property bags because
you can toss values into them and retrieve them later by name. Property bags
need no formal declaration to contain data of any shape. They provide ad hoc
access to variably shaped data, so they’re called bags to cement the metaphor
in your mind.

Note in listing 8.1 that not only can you toss properties into the bag but functions, too.
The Listen and Say functions are assigned to the bag parameter as easily as the ID
property. The Listen method as shown reads a line of text from the console. But you
could easily modify that code at runtime by assigning a different function that invokes
a web service to get the required input. Similarly, the Say function, which writes to the
console, could also be replaced with another that writes the string elsewhere. With
that kind of flexibility, perhaps you can begin to see how the DLR can enable simple
yet compelling metaprogramming scenarios in your own code.

 Invoking the functions that were added dynamically to the TestBag method is also
quite natural, as you can see in listing 8.1. To call one of the newly added methods,
you use the member access (dot) operator on the dynamic object, name the function
to call, and pass required parameters between parentheses. This is the standard C#
syntax for any function invocation operation. Because the bag parameter was declared
as dynamic, C# includes all the necessary code to access ExpandoObject’s dynamic
binding capability for invoking member functions by name.

Listing 8.1 The TestBag function
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NOTE Among the so-called SOLID object-oriented programming principles,
the “L” stands for the Liskov substitution principle (LSP). The simple idea of
the LSP is that replacing an object with an instance of one of its subtypes
shouldn’t break the program. At the heart of the LSP is the idea that types
implement contracts. For example, if consuming code expects a function
named Listen to exist in an object, it must be there or the program could
crash. But when a function can be injected dynamically as demonstrated with
ExpandoObject, are traditional subtypes needed to violate or satisfy the LSP?

8.1.2 The DynamicObject class

The ExpandoObject is quite useful, but it’s marked as sealed in the .NET Framework
Class Library. You can’t use it as a base class to enable other data types with dynamic
binding. You could use the ExpandoObject as a model, implementing the somewhat
complex IDynamicMetaObjectProvider interface to produce similar dynamic behav-
ior, but that requires a fairly deep understanding of expression trees and other com-
plex concepts.

 Thankfully, the DLR provides another class in the System.Dynamic namespace that
isn’t sealed and provides a nice set of methods for selectively implementing dynamic
binding on your own classes. The DynamicObject base class provides the following 12
public, virtual methods which can be overridden selectively to enable specific kinds of
behaviors when working in a DLR-compliant language:

■ TryBinaryOperation—Enables binary operators like addition (+), subtraction
(-), and so on

■ TryConvert—Enables the conversion to statically known types
■ TryCreateInstance—Enables the instantiation of underlying data types that

may be needed to support a dynamic object
■ TryDeleteIndex—Enables the deletion of an indexed collection element (not

supported by C# or Visual Basic syntax)
■ TryDeleteMember—Enables the deletion of a member property or member

function (not supported by C# or Visual Basic syntax)
■ TryGetIndex—Enables fetching the value of an indexed collection element
■ TryGetMember—Enables fetching the value of a property
■ TryInvoke—Enables the invocation of the dynamic object itself as a function
■ TryInvokeMember—Enables the invocation of a member as a function
■ TrySetIndex—Enables the mutation of an indexed collection element
■ TrySetMember—Enables the mutation of a member property or the assignment

of a member function’s implementation
■ TryUnaryOperation—Enables the unary operators like increment (++) and

decrement (--)

The two words repeated throughout this list are try and enables. Those words are
important because they define the spirit of the DynamicObject class. When you use
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the DynamicObject class as a base class, you choose to enable various dynamic binding
features by overriding as many or as few of these virtual methods as necessary. The so-
called metaobject within the DynamicObject will invoke your overridden methods
when the runtime binder dispatches calls into it.

 If, for example you don’t intend for your dynamic type to be treated as an array—
using C#’s index operator ([])—you don’t need to override the TryGetIndex and
TrySetIndex methods in your class. But if at some later time, a consumer of your class
attempts to use the index operator when accessing your dynamic objects, the base
class will throw an exception at runtime because it can’t find an implementation for
the requested operation.

 To put this into context, let’s create your own version of the ExpandoObject aptly
named ElastoObject, as shown in the following listing.

class ElastoObject : DynamicObject
{
  Dictionary<string, object> members =
    new Dictionary<string, object>();

  public override bool TrySetMember(
    SetMemberBinder binder, object value)
  {
    if (value != null)
      members[binder.Name] = value;
    else if (members.ContainsKey(binder.Name))
      members.Remove(binder.Name);
    return true;
  }

  public override bool TryGetMember(
    GetMemberBinder binder, out object result)
  {
    if (members.ContainsKey(binder.Name))
    {
      result = members[binder.Name];
      return true;
    }
    return base.TryGetMember(binder, out result);
  }

  public override bool TryInvokeMember(
    InvokeMemberBinder binder, object[] args,
    out object result)
  {
    if (members.ContainsKey(binder.Name))
    {
      Delegate d = members[binder.Name] as Delegate;
      if (d != null)
      {
        result = d.DynamicInvoke(args);
        return true;

Listing 8.2 ElastoObject Source Code
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      }
    }
    return base.TryInvokeMember(binder, args,
      out result);
  }
}

The ElastoObject shown in listing 8.2 behaves much like the DLR’s ExpandoObject.
In fact, using the test function shown in listing 8.1, the following two lines of code will
behave identically:

TestBag(new ExpandoObject());
TestBag(new ElastoObject());

The key to the ElastoObject’s dynamic binding capability starts with deriving from
the DLR’s DynamicObject base class. Internally, the ElastoObject creates a Dictionary
<string, object> for storing name-value pairs, but it doesn’t implement any inter-
faces specific to that capability, as ExpandoObject does. We’ll use that difference to
show how you can expose dictionary-like functionality without interfaces in the next
section. To handle calls from the runtime binder and the DynamicObject’s metaob-
ject, three overrides are provided in the ElastoObject:

■ TrySetMember

■ TryGetMember

■ TryInvokeMember

The remaining nine virtual functions in the DynamicObject base class aren’t overrid-
den in the ElastoObject because you don’t need those kinds of dynamic binding
capabilities to mimic the behavior of ExpandoObject. Each of the three implemented
overrides takes an operation-specific binder class as its first parameter. The TrySet-
Member method takes a SetMemberBinder type parameter, the TryGetMember takes a
GetMemberBinder type parameter, and so on. Twelve of these binder types are defined
in the System.Dynamic namespace, one for each of the twelve binding operations sup-
ported by DLR-compliant languages. Each binder class can have properties and meth-
ods specific to the type of binding operation to be performed.

 The TrySetMember override handles the setting of new properties and methods into
the dynamic object. The name of the property or method to set is passed in the Set-
MemberBinder’s Name property. The value to be set is passed as a separate parameter and
assigned to the internal dictionary class by name for future use. Returning true from
TrySetMember signals the metaobject that invoked it that the member was successfully set.

 Even though the C# language doesn’t syntactically support the concept of deleting
class members at runtime, the TrySetMember function in the ElastoObject provides a
way to do that. Consider the following line of code:

bag.Say = null;

If you were to add that line near the end of the test function shown in listing 8.1,
you’d effectively delete the Say function from the class at runtime. The TrySetMember
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method considers null to be a sentinel value for signaling the removal of members
from the internal dictionary—even functions that have been added to the dynamic
class. Any attempt to invoke the Say function after removing it would result in a run-
time error.

 The TryGetMember override handles the fetching of property values. The Get-
MemberBinder’s Name property is used to find the desired dictionary entry and return
it to the caller through the result output parameter. If the named member isn’t found
in the dictionary, the base class implementation of TryGetMember is allowed to run,
which will throw a meaningful, DLR-specific exception if it can’t find the named mem-
ber. Again, returning true from this method signals to the metaobject that fetching
the member was successful.

 Lastly, there’s TryInvokeMember, which handles the calling of functions on
the dynamic ElastoObject class. Like TryGetMember, this method attempts to find the
member named within the binder parameter. But rather than returning what it finds,
the TryInvokeMember method casts it to a Delegate and calls its DynamicInvoke func-
tion, passing whatever parameters were provided by the caller.

 One of the key differences between the DLR’s ExpandoObject and the ElastoObject
is in the exposure of the dictionary implementation used to manage the member prop-
erties and methods. The ExpandoObject explicitly implements the interface IDictionary
<string, object>, whereas the ElastoObject hides its internal use of a generic
Dictionary<string, object> class. You may be asking yourself that because both
ExpandoObject and ElastoObject are always meant to be used dynamically, why does
the ExpandoObject expose its dictionary via interface implementation at all? Why not
use dynamic dispatch methods like the one shown in the following listing instead?

public override bool TryGetIndex(
  GetIndexBinder binder, object[] indexes,
  out object result)

The DLR binders as the “language of languages”
If you started a cleanroom exercise to define the discrete operations necessary to
make any two programming languages communicate with each other, the chances
are good that you would end up with something resembling the 12 binding methods
defined in the DLR’s DynamicMetaObject class. 

The 12 virtual methods in the DynamicObject class beginning with Try reflect these
binding operations nicely. With them, you can create new dynamic objects, convert
them, assign property values and new functions, fetch property values, and invoke func-
tions. You can even use them to treat your dynamic objects as arrays or to perform unary
and binary operations on them in the syntax of your favorite DLR-compliant language. 

The DLR provides a robust language of languages that could be considered not a
metaprogramming tool but a generalized Inter-Process Communication (IPC) framework.

Listing 8.3 Adding Indexing to ElastoObject
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{
  string name = indexes[0] as string;
  if (members.ContainsKey(name))
  {
    result = members[name];
    return true;
  }
  return base.TryGetIndex(binder, indexes,
    out result);
}

If the TryGetIndex method shown in listing 8.3 were added to the ElastoObject
shown in listing 8.2, an interesting new dynamic capability would be added. Specifi-
cally, you could write code like this, using the listings provided so far in this chapter:

dynamic squishy = new ElastoObject();
TestBag(squishy);
Delegate shout = squishy["Say"];
string id = squishy["ID"];
shout.DynamicInvoke("Howdy, " + id + ".");

This is ugly code, we admit. But it does demonstrate how DLR binding can be used to
expose collection-like functionality from a dynamic type without implementing any col-
lection-specific contracts. There’s nothing wrong with implementing interfaces, but for
classes that are always meant to be used dynamically, what’s the value in doing so?

 If you disassemble the DLR’s ExpandoObject, you’ll see that it provides a much
more robust implementation of a property and function bag than the ElastoObject
shown here. We encourage you to do your own disassembly and inspection. Dissecting
Microsoft’s code in the .NET Framework Class Library is a great way to learn. But even
without that sort of investment, you should recognize from the simple ElastoObject
class shown here that writing your own dynamic types using the DLR’s DynamicObject as
a base class isn’t difficult.

 Now that we’ve successfully mimicked the ExpandoObject to a certain extent, let’s
take a look at a real-world example of dynamic types in action.

8.1.3 Parsing the Open Data Protocol dynamically

The 2011 Digital Universe Study by IDC (sponsored by EMC) estimated that 1.2 zetta-
bytes of data was created. In 2011, the estimate was 1.8 zettabytes. That’s almost two
trillion gigabytes of information. Anyone working in a data-rich business environment
nowadays understands that a lot of this data is unstructured or semistructured in
nature. That study also showed that the growth of data in the coming decade will
exceed 7,500 percent, whereas the growth in the available IT staff will grow by a com-
paratively modest 150 percent.

 One of the ways to meet the challenge is through extensible systems like the Open
Data Protocol (OData). The excellent depth of expression in OData lies in the Com-
mon Schema Definition Language (CSDL) and its Entity Data Model (EDM). The
OData Atom format allows for metadata-rich, highly extensible property sets to be
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exposed on nearly any type of schema. One of the most popular internet services sup-
porting OData is Netflix. To query the Atom (XML) document for the movie The Termi-
nator, the following query might be used:

http://odata.netflix.com/Catalog/Titles
  ?$filter=Name eq 'The Terminator'

Key that web address into your browser to see the Atom document describing the
movie. The XML clipping in the following listing shows an interesting chunk of the docu-
ment that could be returned.

<m:properties>
  <d:Name>The Terminator</d:Name>
  <d:Synopsis>In the post-apocalyptic ...</d:Synopsis>
  <d:AverageRating m:type="Edm.Double">3.9</d:AverageRating>
  <d:ReleaseYear m:type="Edm.Int32">1984</d:ReleaseYear>
  <d:Runtime m:type="Edm.Int32">6420</d:Runtime>
  <d:Rating>R</d:Rating>
  <d:Dvd>
    <d:Available m:type="Edm.Boolean">true</d:Available>
  </d:Dvd>
  <d:BluRay>
    <d:Available m:type="Edm.Boolean">true</d:Available>
  </d:BluRay>
  <d:Instant>
    <d:Available m:type="Edm.Boolean">true</d:Available>
  </d:Instant>
  <d:BoxArt>
    <d:SmallUrl>http://cdn-1.nflximg.com/...</d:SmallUrl>
  </d:BoxArt>
</m:properties>

In Atom documents like the one shown in listing 8.4, the "m:" prefix denotes the
Atom metadata namespace, whereas "d:" signifies an Atom data property. Notice that
some of the properties in the Netflix feed are tagged with a data type attribute. For
example, the AverageRating property is declared as the type Edm.Double. This is a
well-known, primitive data type from the CSDL EDM for double-precision floating
point numbers. Also in the Netflix document fragment, observe the use of the primi-
tive data types Edm.Int32 and Edm.Boolean. This is valuable metadata that any code
designed to parse OData feeds should take full advantage of.

 Now look at another example. The following URL will retrieve the OData feed from
ebay.com for items related to The Terminator. Realize that because ebay.com can sell
items of any type, such a search term may return many items: 

http://ebayodata.cloudapp.net/Items?search=The Terminator

The following listing shows a subset of the properties returned by the ebay.com OData
service for such a search term.

Listing 8.4 Fragment of Netflix OData describing a movie
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<m:properties>
  <d:Title>Terminator 3: Rise of the Machines (DVD)</d:Title>
  <d:TimeLeft>P0DT0H9M42S</d:TimeLeft>
  <d:Currency>USD</d:Currency>
  <d:CurrentPrice m:type="Edm.Double">
    2.5</d:CurrentPrice>
  <d:Country>US</d:Country>
  <d:GalleryUrl>http://thumbs...</d:GalleryUrl>
  <d:Condition>
    <d:Name>Like New</d:Name>
  </d:Condition>
  <d:ListingInfo>
    <d:ListingType>Auction</d:ListingType>
  </d:ListingInfo>
  <d:ShippingInformation>
    <d:ShippingServiceCost m:type="Edm.Double">
      3</d:ShippingServiceCost>
  </d:ShippingInformation>
</m:properties>

Saying that the schema of Netflix OData and ebay.com OData differ would not be accu-
rate. After all, they both adhere to the same CSDL specification and they’re both
Atom-compliant. But in looking at them, they’re clearly structured differently using
the extensible data properties available via Atom. The code to parse these two differ-
ent feeds obviously needs to be specialized—in particular, because one of them will
return at most one item and the other may return many. Or does it? A dynamic data
type may help to solve this problem generically by exposing a natural, language-
integrated syntax for parsing any kind of OData.

ESTABLISHING THE FRAMEWORK OF THE DYNAMICODATA CLASS

Because OData sources can be slow and aren’t suitable for synchronous consumption
from UI code, let’s begin by adding a delegate called DataReady that can pass a
dynamically typed object to event subscribers. This will allow the asynchronous feed
fetching methods to signal callers when OData documents become ready:

public delegate void DataReady(dynamic obj);

Next let’s define a couple of XML namespaces commonly used in the publication of
OData feeds via Atom. These are for the metadata properties collection and the data
properties contained therein, as shown in listings 8.4 and 8.5. An event of the
DataReady delegate type will also be exposed from the class:

public class DynamicOData
{
  public event DataReady OnDataReady;

  private const string odataNamespace =
    "http://schemas.microsoft.com/ado/" +
    "2007/08/dataservices";

Listing 8.5 Fragment of ebay.com OData feed for a search term
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  private const string metadataNamespace =
    odataNamespace + "/metadata";
}

Now, let’s add to the class the means for storing a reference to an XML node within
the feed:

private IEnumerable<XElement> _current = null;

To complete the basic setup, you need a few constructors for the class. A default con-
structor that sets no _current XML element will come in handy. The other two
constructors will help handle two specific cases during XML as you move through the
document hierarchy: one where a single XML node needs to be wrapped as a new
DynamicOData object and another when a sequence of nodes needs to be presented
that way:

public DynamicOData() { }

protected DynamicOData(XElement current)
{
  _current = new List<XElement> { current };
}

protected DynamicOData(
  IEnumerable<XElement> current)
{
  _current = new List<XElement>(current);
}

FETCHING AND PARSING AN ODATA FEED ASYNCHRONOUSLY

Now that you have the basic framework for the DynamicOData class in place, let’s add a
method to fetch data from a query string:

public void FetchAsync(string queryUrl)
{
  WebClient client = new WebClient();
  client.DownloadStringCompleted +=
    OnDownloadCompleted;
  client.DownloadStringAsync(
    new Uri(queryUrl));
}

The class must also include a method to be called when the WebClient’s Download-
StringCompleted event fires:

private void OnDownloadCompleted(object sender,
  DownloadStringCompletedEventArgs e)
{
  string xml = (e != null || e.Error == null)
      ? e.Result : String.Empty;
  if (xml != null)
  {
    var document = XDocument.Parse(xml);
    XNamespace ns = metadataNamespace;
    _current = document.Descendants(
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      ns + "properties");
  }
  if (OnDataReady != null)
    OnDataReady(this);
}

The OnDownloadCompleted method parses the XML string from the OData server and
assigns the descendent nodes matching the Atom metadata properties namespace to
the _current enumeration. Finally, the OnDataReady event is fired for any subscribers
to let them know that the data is ready. 

ADDING DYNAMIC TRYGETMEMBER FUNCTIONALITY TO THE CLASS

So far, there’s no dynamic capability in the DynamicOData class. It doesn’t even derive
from the DLR’s DynamicObject class as we’ve constructed it so far. Let’s add that decla-
ration to the class:

public class DynamicOData, DynamicObject

To make the OData Atom data properties available in DLR-compliant languages as
properties on the dynamic class, override the TryGetMember method as shown in the
next listing. This method exposes a pseudoproperty called Value that can be used to
obtain the text value at a given XML node. The code works by fetching the Value
property of the first XElement on the _current collection.

public override bool TryGetMember(
  GetMemberBinder binder, out object result)
{
  result = null;
  if (binder.Name == "Value")
  {
    XElement element = _current.ElementAt(0);
    result = _current.ElementAt(0).Value;
  }
  else
  {
    var items = _current.Descendants(
      XName.Get(binder.Name,
        odataNamespace));
    if (items == null || items.Count() == 0)
      return false;
    result = new DynamicOData(items);
  }
  return true;
}

If the property named in the GetMemberBinder parameter isn’t the special pseudo-
property, the code gathers up the XML descendants of the _current node, packages
them as a new DynamicOData object using one the constructors described earlier, and
returns it. By returning a new DynamicOData object for the newly discovered nodes,
you can chain dynamic accesses one after the other to traverse the XML hierarchy.

Listing 8.6  Adding TryGetMember to the DynamicOData class
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 Peek at the fragment of the Netflix OData feed in listing 8.4, examining how DVD
availability is encoded. With the simple TryGetMember function in place, you can write
simple code like this to access such an element:

DynamicOData movie = new DynamicOData();
movie.OnDataReady += title => {
  Console.WriteLine(title.Dvd.Available.Value); };
movie.FetchAsync(
  "http://odata.netflix.com/Catalog/Titles" +
  "?$filter=Name eq 'The Terminator'");

This will write the string "true" to the console window if the requested movie is avail-
able at Netflix. Observe how the lambda expression assigned to the OnDataReady
event chains together XML elements in the feed. Because of the way the delegate was
declared, the title parameter is treated dynamically by the compiler. Therefore, the
call to title.Dvd invokes the TryGetMember method, which wraps the XML nodes
there as a new DynamicOData object and returns it. From there, the treatment contin-
ues dynamically, so the Available node is similarly accessed via TryGetMember and
wrapped as another new DynamicOData object. Finally, the special Value pseudoprop-
erty is requested, so the TryGetMember implementation obtains the Value of the DVD
availability node and returns it to the caller. This doesn’t look like XML parsing at all,
does it? Instead, it appears as though we’re accessing well-known properties within the
OData using plain old C# syntax.

 One of the refinements that would be nice at this point is to take advantage of the
CSDL EDM type data that’s embedded in the Atom feed. Observe in listing 8.4 that the
Netflix feed includes type information for DVD availability. Specifically, a type attri-
bute is included like this:

<d:Dvd>
  <d:Available m:type="Edm.Boolean">true</d:Available>
</d:Dvd>

Rather than return a string of the XML node value, why not have the dynamic type
coerce the value into its declared type and return it to the caller? You can do that by
adding a bit of parsing code to the TryGetMember method where it handles the Value
pseudoproperty, as shown in the following listing.

XAttribute typeAttr = element.Attribute(
  XName.Get("type", metadataNamespace));
if (typeAttr != null)
{
  string type = typeAttr.Value;
  if (type != null)
  {
    switch (type)
    {
      default:
        break;

Listing 8.7 Coercing to various OData CSDL EDM data types
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      case "Null":
        result = null;
        break;
      case "Edm.Boolean":
        result = Convert.ToBoolean(result);
        break;
      case "Edm.Byte":
        result = Convert.ToByte(result);
        break;
      case "Edm.DateTime":
        result = Convert.ToDateTime(result);
        break;
      case "Edm.Decimal":
        result = Convert.ToDecimal(result);
        break;
      case "Edm.Double":
        result = Convert.ToDouble(result);
        break;
      case "Edm.Single":
        result = Convert.ToSingle(result);
        break;
      case "Edm.Guid":
        result = Guid.ParseExact(
          (string)result, "D");
        break;
      case "Edm.Int16":
        result = Convert.ToInt16(result);
        break;
      case "Edm.Int32":
        result = Convert.ToInt32(result);
        break;
      case "Edm.Int64":
        result = Convert.ToInt64(result);
        break;
      case "Edm.SByte":
        result = Convert.ToSByte(result);
        break;
      case "Edm.DateTimeOffset":
        result = DateTimeOffset.Parse(
          (string)result);
        break;
    }
  }
}

With the code from listing 8.7 inside the TryGetMember’s Value pseudoproperty han-
dler, try running the preceding small exercise to get the DVD availability for a movie.
You’ll notice that now what appears on the console are the words "True" or "False"
instead of "true" or "false," respectively. Visually, it’s a small difference, but under
the covers the change is significant. When the words "true" or "false" were being dis-
played on the console, it was because the literal string within the XML was being writ-
ten. But after adding code to coerce the property value to .NET data types, depending
on the EDM data types declared in the underlying XML, the outputs "True" and
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"False" indicate that you’re working with the return values from the ToString
method on a System.Boolean object instead.

ADDING DYNAMIC TRYGETMEMBER FUNCTIONALITY TO THE CLASS

Reading XML from an OData feed using fluent C# syntax is great, but you may want to
modify the document, too. That’s simple: override the TrySetMember method in the
DynamicOData class, as shown in the following listing.

public override bool TrySetMember(
  SetMemberBinder binder, object value)
{
  if (binder.Name == "Value")
  {
    _current.ElementAt(0).Value =
      value.ToString();
    return true;
  }
  return false;
}

Notice in listing 8.8 that only the Value pseudoproperty is assignable. We stopped
there for simplicity, but you can certainly add more functionality to the TrySetMember
method if good reasons to do so exist. With this simple, new method in place, you
could now add the following lines of code to the lambda expression shown earlier to
modify the movie obtained from the Netflix service:

title.Dvd.Available.Value = false;
title.AverageRating.Value = 4.1;

This will set the DVD availability and average rating in the underlying XML document.
Querying those values later will prove that the change has been recorded. Not that
Netflix would allow us to change those values by posting back to its OData service, but
if it did, the modified document in hand would be a good starting point.

ADDING DYNAMIC TRYGETINDEX FUNCTIONALITY TO THE CLASS

Not all OData queries will produce a single object as the Netflix query does. In fact,
because individual properties within a node can themselves be collections of other
properties and can be wrapped as new DynamicOData objects, having the class behave
as an array from time to time is important. To do that, add the following method:

public override bool TryGetIndex(
  GetIndexBinder binder, object[] indexes,
  out object result)
{
  int ndx = (int)indexes[0];
  result = new DynamicOData(
    _current.ElementAt(ndx));
  return true;
}

Listing 8.8 Adding TrySetMember to the DynamicOData class
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For simplicity, only a single, numeric index will be accepted. You could add as many
index dimensions as you like, and those could be of any data type. Notice that you’re
using the other custom constructor described at the beginning of this example, wrap-
ping the single XElement at the specified index as a new DynamicOData object. That
allows the returned object to be used to continue the chain of resolution like this:

DynamicOData ebayItem = new DynamicOData();
ebayItem.OnDataReady += item => {
  Console.WriteLine(
    item[3].ShippingInformation
      .ShippingServiceCost.Value); };
ebayItem.FetchAsync(
  "http://ebayodata.cloudapp.net/ +
  "Items?search=The Terminator ");

This small bit of code will display the shipping service cost of the fourth item on the
console window. Observe the similarities between the code used to query Netflix and
this code that queries ebay.com. The DynamicOData class makes it possible to treat all
OData feeds in a similar fashion, greatly increasing programmer comprehension by
reducing code complexity. If you recall, this was a key goal for the application of
metaprogramming techniques that we declared at the beginning of the book.

8.2 The DLR hosting model
Thinking back to the goals of metaprogramming stated in the beginning of the book,
remember that meta can mean after or beside. Many types of metaprogramming we’ve
explored so far are the after kind, realized by modifying types and classes after they’ve
been created to alter their behavior. Other types of metaprogramming you’ve seen are
the beside varieties, creating types on the fly to suit your needs at runtime. Scripting
fits nicely into the beside style of metaprogramming because it involves running code
alongside another system, often acting as its controller.

 There are many reasons for wanting to integrate your application’s main program-
ming language, say C#, with a scripting language like Python or Ruby. To highlight
one of the more interesting examples of this type, take a look at the pseudocode in
the next listing. Don’t worry about syntax and such for now. Read through the listing
and imagine that the business users of an e-commerce application wrote this pseudo-
code to express the basic rules that govern the discounting of products based on their
advertising promotions.

totalItems = 0
clothingItems = 0

for line in cart.LineItems:
  line.Discount = 0.0
  totalItems = totalItems + line.Quantity
  if line.Product.Category == 'Clothing':
    clothingItems = clothingItems + line.Quantity

Listing 8.9 A script for discounting items by type in a shopping cart
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clothingDiscount = 0.0
if clothingItems > 5:
  clothingDiscount = 0.09
elif clothingItems >= 2:
  clothingDiscount = 0.05

for line in cart.LineItems:
  if line.Product.Category == 'Clothing':
    line.Discount = clothingDiscount
  if totalItems >= 7:
    line.Discount = line.Discount + 0.03

Not knowing anything in particular about the pseudocode in listing 8.9, most develop-
ers can recognize what this script might do. In fact, many savvy business users will fol-
low along, too, given the sheer simplicity of the code. Reading it in English, it goes
something like this:

■ Set up a couple of variables for counting items.
■ Loop over the LineItems contained in something named the cart.

– Set the Discount level of each LineItem to zero.
– Accumulate the Quantity of each LineItem into totalItems.
– For each LineItem that has the 'Clothing' Category for its Product, accu-

mulate the Quantity of each LineItem into clothingItems.
■ Set a discount percentage for all clothing items based on the count tallied

within the loop. At least two clothingItems in the cart yields a 5 percent dis-
count on them, whereas 5 or more result in a 9 percent discount being applied.

■ Loop over the LineItems in the cart again, setting the calculated discount per-
centages for the items in the 'Clothing' Product Category. To make things
interesting, an additional 3 percent discount is applied to every item in the
cart if 7 or more items have been included.

In this pseudocode, the only concept that isn’t clear lies in the definition of the cart
variable and the LineItem collection it contains. Where was the cart defined? Soon
enough, we’ll show you how to inject a plain old .NET object (PONO) like the cart
into a script like this one using DLR hosting.

 If you’re comfortable with the pseudocode in listing 8.9 by now, it’s time to reveal a
little secret. It’s not pseudocode at all. It’s a working Python program that we’ll use in
the next section to demonstrate how you can integrate a scriptable rules engine in
your own applications with a few dozen lines of code. First, though, understanding the
key classes that exist for DLR hosting is important. Let’s become familiar with run-
times engines and scopes: three of the more important type groups to using DLR host-
ing effectively.

NOTE Microsoft’s Dino Viehland, one of the key contributors to the DLR and
the IronPython language implementation, describes the DLR as having two
layers. The inner layer contains the .NET Framework classes like Dynamic-
Object and the various binders examined in the previous section. Those
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classes are part of the .NET core, so everyone who installs the .NET Framework
has them. The outer layer of the DLR, specifically the hosting API, exists in
assemblies that don’t ship with the .NET framework. Download the latest sta-
ble release from http://ironpython.codeplex.com to complete the exercises
in the remainder of this section.

8.2.1 Runtimes, engines, and scopes

When you begin working with DLR hosting, the sheer volume of domain-specific
classes can make the concepts difficult to grasp. You’ll see classes in the Microsoft
.Scripting namespace like SourceUnit, ScopeVariable, and ScriptCode. From the
Microsoft.Scripting.Hosting namespace, you’ll come across classes like Compiled-
Code, ScriptHost, and ScriptSource. All these classes exist in a single assembly
named Microsoft.Scripting.dll that you need to reference in any application that
hosts DLR-compliant scripting languages. You can download that assembly and its
source code from http://dlr.codeplex.com.

 With so many hosting classes having the word script in their names, knowing
where to start can be confusing. For simple script hosting scenarios, there are three
core types in the DLR that you should understand well: the ScriptRuntime, the
ScriptScope, and the ScriptEngine.

THE SCRIPTRUNTIME CLASS

As you can see in figure 8.1, the ScriptRuntime is something of a master object in the
DLR’s hosting model.

Figure 8.1 The major classes in the DLR Hosting API are the 
ScriptRuntime, ScriptScope, and ScriptEngine. To use the hosting 
API, always start by creating a ScriptRuntime, specifying the scripting 
languages that you intend to make available.

http://ironpython.codeplex.com
http://dlr.codeplex.com
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It represents the global script state for a ScriptEngine and its associated scope and
executable code objects. Any application hosting a DLR-compliant scripting language
will begin by using a constructor for the runtime class or by calling its static factory
method CreateFromConfiguration to load language setup data from the applica-
tion’s configuration file. The following listing shows a sample configuration file that
could be used to set up the assembly for the IronPython language using the Create-
FromConfiguration factory method.

<?xml version="1.0"?>
<configuration>
  <configSections>
    <section name="microsoft.scripting"
      type="Microsoft.Scripting.Hosting.Configuration.Section,
        Microsoft.Scripting"/>
  </configSections>
  <microsoft.scripting>
    <languages>
      <language names="IronPython;Python;py"
        extensions=".py" displayName="IronPython"
        type="IronPython.Runtime.PythonContext, IronPython"/>
    </languages>
  </microsoft.scripting>
</configuration>

If you choose to use the configuration file-based factory method to create a Script-
Runtime, you must include at least one <language> element within the <languages>
collection.

 To ensure that the loading and processing of
the configuration file shown in listing 8.10 doesn’t
fault and throw exceptions at runtime, the assem-
blies IronPython.dll and Microsoft.Scripting
.dll must be available in the application’s private
assembly path at runtime. But it’s common for
Visual Studio not to copy these assemblies to the
output directory because there may be no men-
tions of types from those assemblies in the C# or
Visual Basic source code. You can avoid this by set-
ting the Copy Local property of those references to
True, as shown in figure 8.2.

 Once Microsoft.Scripting.dll and lan-
guage-specific assemblies have been properly ref-
erenced, and an application configuration file
like the one shown in listing 8.10 is available, the
following line of code will create a DLR hosting
runtime without exception:

Listing 8.10 Application configuration file for enabling IronPython

Figure 8.2 Referenced scripting 
language assemblies may not be copied 
to the output directory by Visual Studio 
during compilation. Set the Copy Local 
property on the assembly reference to 
True in the Solution Explorer pane as 
shown here to make sure they are copied.
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ScriptRuntime runtime =
  ScriptRuntime.CreateFromConfiguration();

You may include multiple setup sections for hosting more than one scripting language
in an application. For example, you could allow your program to be simultaneously
scripted with both Python and Ruby. That’s not common, but it’s certainly possible. If
you don’t want to use a configuration file to express the scripting language setup, you
can also do it in source code, as follows:

var language = new LanguageSetup(
  "IronPython.Runtime.PythonContext, IronPython",
  "IronPython",
  new[] { "IronPython", "Python", "py" },
  new[] { ".py" });
var runtimeSetup = new ScriptRuntimeSetup();
runtimeSetup.LanguageSetups.Add(language);
var runtime = new ScriptRuntime(runtimeSetup);

In this snippet of code, a LanguageSetup class is constructed passing values similar to
those specified in the <language> element of the configuration file shown in listing 8.10.
Next, a ScriptRuntimeSetup class is created, and the newly created LanguageSetup is
inserted into its LanguageSetups collection. Finally, the ScriptRuntimeSetup instance
is passed to the constructor of the ScriptRuntime class.

 There’s a factory method called ReadConfiguration in the ScriptRuntimeSetup
type that you may also find useful for configuring runtime objects. With this static
method, a custom configuration file can be loaded to construct a ScriptRuntime with
a single line of code:

var customRuntime = new ScriptRuntime(
  ScriptRuntimeSetup.ReadConfiguration(
    "custom.config"));

You can use an overloaded version of that same factory method to load the configura-
tion from a System.IO.Stream–derived object instead:

byte[] buffer;
// fill buffer with configuration here
ScriptRuntime streamRuntime;
using (var stream = new MemoryStream(buffer))
{
  streamRuntime = new ScriptRuntime(
    ScriptRuntimeSetup.ReadConfiguration(stream));
}

In this example, a MemoryStream has been loaded with configuration data from some
unknown source—perhaps from a remote configuration service. The resulting Stream
is read by the ReadConfiguration factory method to create the ScriptRuntimeSetup
instance necessary for constructing a new runtime. Any Stream–derived type will do,
including a SqlFileStream or a NetworkStream, making this a handy factory method
for fetching configuration data for DLR hosting runtimes from a variety of sources.
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 The ScriptRuntime class contains a variety of useful collections and helper meth-
ods, covered in the next few pages. But we can’t cover all of them. For a more com-
plete reference, download dlr-spec-hosting.pdf from the documentation area of http://
dlr.codeplex.com.

THE SCRIPTENGINE CLASS

After obtaining a reference to a ScriptRuntime configured for the IronPython lan-
guage, you could execute a file containing Python source with one line of code:

runtimeObject.ExecuteFile("HelloWorld.py");

This may be convenient, but it offers little control over the environment you need to
prepare for the script’s execution. Loading source code from disk-based storage is also
less than ideal in a lot of situations. In sophisticated script-hosting applications with
many script assets, source code is often acquired from a database or from a web ser-
vice instead.

NOTE As of this writing, the stable, shipping versions of IronPython and Iron-
Ruby are v2.7.2.1 and v1.1.3, respectively. All the samples in this section of the
book will work with those versions. When you reference the IronPython.dll
assembly, you can do it from the Global Assembly Cache (GAC) or directly from
the installation folder, typically in C:\Program Files (x86)\IronPython 2.7 or
some similar path. IronRuby’s main assembly is only installed in the GAC. But
you can reference it from a version-specific subfolder under C:\Windows\
Microsoft.NET\assembly\GAC_MSIL\IronRuby if you must. Better yet, down-
load the source code for IronPython and IronRuby, then build your own
assemblies for these languages.

For finer control, it’s usually better to fetch a reference to an engine object that can
execute source code in a variety of useful ways. Because a single ScriptRuntime can host
more than one scripting language simultaneously, you must ask for a specific Script-
Engine by name or by file type. The next shows the loading of both the IronPython
language and the IronRuby language into a single ScriptRuntime and then the use of
two different methods to obtain the ScriptEngine for each language.

public static void MultiLanguageLoad()
{
  var runtimeSetup = new ScriptRuntimeSetup();

  var pythonSetup = new LanguageSetup(
    typeName: "IronPython.Runtime.PythonContext, IronPython",
    displayName: "IronPython",
    names: new[] { "IronPython", "Python", "py" },
    fileExtensions: new[] { ".py" });
  runtimeSetup.LanguageSetups.Add(pythonSetup);

  var rubySetup = new LanguageSetup(
    typeName: "IronRuby.Runtime.RubyContext, IronRuby",

Listing 8.11 MultiLanguageLoad: executing in two languages from ScriptEngines

http://
dlr.codeplex.com
http://
dlr.codeplex.com
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    displayName: "IronRuby",
    names: new[] { "IronRuby", "Ruby", "rb" },
    fileExtensions: new[] { ".rb" });
  runtimeSetup.LanguageSetups.Add(rubySetup);

  ScriptRuntime runtimeObject =
    new ScriptRuntime(runtimeSetup);

  ScriptEngine pythonEngine =
    runtimeObject.GetEngine("Python");
  pythonEngine.Execute("print 'Hello from Python!'");

  ScriptEngine rubyEngine =
    runtimeObject.GetEngineByFileExtension(".rb");
  rubyEngine.Execute("puts 'Hello from Ruby!'");
}

The MultiLanguageLoad example in listing 8.11 starts
by creating LanguageSetup objects for IronPython and
IronRuby and then loads them into a new Script-
Runtime. Because we’re not using types from Iron-
Python and IronRuby in the compiled code, be sure to
set the Copy Local property to True for the Iron-
Python.dll and IronRuby.dll assemblies in your Visual Stu-
dio project, as shown in figure 8.2. The remaining lines of
code in the MultiLanguageLoad example demonstrate
how you can obtain language engine references using the
GetEngine and GetEngineByFileExtension methods
on the runtime object. Using those engine references, executing simple bits of Python
and Ruby code is easy, as shown in figure 8.3.

 As you observed in the MultiLanguageLoad example, the ScriptEngine Execute
method takes a string parameter containing the text of the script to execute. What you
can’t see in that example is that the Execute method also returns the result of the
script as a System.Object value. Moreover, in a DLR-compliant host language like C#,
the object returned is also treated as a dynamic object:

string name = pythonEngine.Execute(
  "raw_input('What is your name? ')");

This snippet would query users for their name using Python’s raw_input function and
return the supplied string as a dynamic object. Because the return type from Execute
is marked as dynamic, the C# compiler emits the necessary call site code at the point
of assignment to coerce the return value into a System.String. That coercion of
dynamic objects is handy but comes at a cost, typically in performance. What if you
wanted to strongly type the result to avoid the overhead of dynamic typing in the C#
code? As it turns out, an overloaded version of the Execute method exists to do that.
Consider the following line of C# code:

int age = engine.Execute<int>(
  "input('How old are you? ')");

Figure 8.3 The output from the 
MultiLanguageLoad example 
in listing 8.11 shows that Python 
and Ruby can be executed from a 
single ScriptRuntime using 
two language-specific 
ScriptEngine objects.
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In this example, a generic method named Execute is used to strongly type the result.
Inside the Python script that’s executed, also note that instead of using the raw_input
function, the input function is used instead. The input function in Python is a conve-
nience that combines raw_input, which returns a string, with eval, which evaluates
the expression provided to it as a new Python code expression. Because you expect
the user to type in a number as the response to the prompt, Python’s input (eval)
function treats it as numeric literal and compiles it into the correct type. 

 This runtime evaluation of code expressions
becomes clear when you look at figure 8.4, which
demonstrates the output of the ReturnScalar-
FromScript example. Notice that the age sup-
plied for the second question is an expression
that adds two integers. Python’s input function
evaluates that expression to yield a single integer
value, which is returned to the caller strongly
typed. The complete code for that example can
be found in listing 8.12.

public static void ReturnScalarFromScript()
{
  var runtimeSetup = new ScriptRuntimeSetup();
  var languageSetup = new LanguageSetup(
    "IronPython.Runtime.PythonContext, IronPython",
    "IronPython", new[] { "Python" }, new[] { ".py" });
  runtimeSetup.LanguageSetups.Add(languageSetup);
  var runtime = new ScriptRuntime(runtimeSetup);
  ScriptEngine engine = runtime.GetEngine("Python");

  string name = engine.Execute(
    "raw_input('What is your name? ')");
  int age = engine.Execute<int>(
    "input('How old are you? ')");

  Console.WriteLine(
    "Wow, {0} is only {1} years old!", name, age);
}

THE SCRIPTSOURCE AND COMPILEDCODE CLASSES

Two more DLR hosting types that are useful when working with the ScriptEngine
class are ScriptSource and CompiledCode. So far, we’ve only shown the passing of
strings containing script code. But a real-world application may have dozens of scripts
to load simultaneously from files, databases, or network streams. It’s useful to store
these code assets in an object model that has properties and methods for managing
the code programmatically. Moreover, the ScriptSource is a gateway class for compil-
ing scripts for reuse throughout an application. To obtain a reference to a Script-
Source, use the following ScriptEngine methods:

Listing 8.12 ReturnScalarFromScript: experimenting 
with ScriptEngine’s Execute

Figure 8.4 The Execute methods in 
the ScriptEngine class can be used 
to run scripts and return values to the 
host application. 
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■ CreateScriptSource

■ CreateScriptSourceFromFile

■ CreateScriptSourceFromString

The following listing shows an example of obtaining a ScriptSource from a Python
ScriptEngine and using it to load a script file from a string before compiling and exe-
cuting it.

public static void PassingVariablesToCompiledCode(
  string question, object correctResponse)
{
  var runtimeSetup = new ScriptRuntimeSetup();
  var languageSetup = new LanguageSetup(
    "IronPython.Runtime.PythonContext, IronPython",
    "IronPython", new[] { "Python" }, new[] { ".py" });
  runtimeSetup.LanguageSetups.Add(languageSetup);
  var runtime = new ScriptRuntime(runtimeSetup);
  ScriptEngine engine = runtime.GetEngine("Python");

  ScriptSource source =
    engine.CreateScriptSourceFromString(@"
import Question
import CorrectResponse
input(Question) == CorrectResponse
");

  CompiledCode AskQuestion = source.Compile();

  runtime.Globals.SetVariable("Question", question);
  runtime.Globals.SetVariable(
    "CorrectResponse", correctResponse);

  Console.WriteLine("You chose... {0}",
    AskQuestion.Execute<bool>()
      ? "wisely."
      : "poorly");
}

In listing 8.13, after setting up the ScriptRuntime for IronPython and obtaining a
ScriptEngine reference, a short Python script of three lines is loaded using the
engine’s CreateScriptSourceFromString method. The ScriptSource is then com-
piled using an instance method aptly named Compile. This yields a CompiledCode
object that can be executed over and over again.

 However, notice in the listing that before executing the CompiledCode object,
the Globals property on the ScriptRuntime is used to inject two variables into the
execution scope that the script can access. The next section gets into script scopes in
more detail. For now, think of the Globals scope as a place where the hosting C#
application can store variables for the script to access when it runs. The two vari-
ables that are injected using the SetVariable method take their values from func-
tion parameters and are named "Question" and "CorrectResponse." The tiny,

Listing 8.13 PassingVariablesToCompiledCode
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three-line Python script loaded into the ScriptSource in listing 8.13 references
those same names:

import Question
import CorrectResponse
input(Question) == CorrectResponse

The two import statements are required because the IronPython engine doesn’t auto-
matically load variables from the Globals scope into the execution context. These two
import statements pull the variables injected using the SetVariable method used in
listing 8.13 into the local scope so that the remaining script can access them. In the
next section, when you instantiate a ScriptScope instance of your own, the import
statements aren’t necessary because the variables you inject will already be available in
the local scope.

 For the remaining single line of script code used in listing 8.13, remember that
Python’s input function prints the supplied string to the console, reads the raw
input typed in response, and runs it through the eval function to compile and exe-
cute it as a new expression. Lastly, that evaluated expression is compared to the cor-
rect (or expected) response to yield a Boolean result. The last C# code line in
listing 8.13 performs the execution step and reads that Boolean response value
from the script execution:

  Console.WriteLine("You chose... {0}",
    AskQuestion.Execute<bool>()
      ? "wisely."
      : "poorly");

The Execute<T> method on the CompiledCode object named AskQuestion is used to exe-
cute the script. In this instance, the generic function is made concrete as Execute<bool>
to fetch the result of the comparison done on the last line of the Python script. When
the user answers the posed question correctly, they’re deemed wise. You could give a
short chemistry quiz by calling the PassingVariablesToCompiledCode function in
succession like this:

PassingVariablesToCompiledCode(
  "Platinum has 6 naturally-occuring " +
  "iostopes. True or False? ", true);

PassingVariablesToCompiledCode(
  "By ascending rank, where does the mass " +
  "of calcium in the Earth's\r\ncrust fall " +
  "as compared to the other elements? ", 5);

The result of calling the function like this can be seen in figure 8.5. Note that the
responses given by the user are a bit cheeky, taking advantage of the fact that Python’s
input function will be used to evaluate the text before comparing it to the correct
response. For the first quiz question, the response “1 == 1” evaluates to the Boolean
value of True, which is expected. For the second question, the response “2 + 3” evalu-
ates to the integer value of 5, which is the correct value for answering that question.
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Now that you’ve seen how to pass variables into a compiled script and get a result, it’s
time to refine the code using a local ScriptScope and other optimizations. You may
have noticed that the code in listing 8.13 is inefficient, creating new runtime and
engine instances each time the function is called. That’s not necessary. Also, the
ScriptSource and CompiledCode objects are recreated every time the function is
called, defeating the real value of compiling the script code in the first place. You’ll fix
all of those problems in the next section as you examine the DLR’s ScriptScope class.

THE SCRIPTSCOPE CLASS

You’ve already seen how you can use the Globals property on the ScriptRuntime
class to pass variables to an executed script. What we didn’t reveal in the discussion of
listing 8.13 was the data type of the Globals property: a ScriptScope instance from
the Microsoft.Scripting.Hosting namespace. Each ScriptRuntime contains a sin-
gle object of type ScriptScope for managing so-called global variables. But you can
create your own ScriptScope objects for managing variables that belong together
according to your application’s overall architecture. To show how this works, the fol-
lowing listing instantiates a ScriptScope to manage the Question and Correct-
Response values shown in the previous listing.

private static ScriptEngine _pythonEngine = null;
private static ScriptEngine PythonEngine
{
  get
  {
    if (_pythonEngine == null)
    {
      var runtimeSetup = new ScriptRuntimeSetup();
      var languageSetup = new LanguageSetup(
        "IronPython.Runtime.PythonContext, IronPython",
        "IronPython", new[] { "Python" }, new[] { ".py" });
      runtimeSetup.LanguageSetups.Add(languageSetup);
      var runtime = new ScriptRuntime(runtimeSetup);
      _pythonEngine = runtime.GetEngine("Python");
    }
    return _pythonEngine;
  }
}

private static CompiledCode _askQuestion = null;
private static CompiledCode AskQuestion

Listing 8.14 PoseQuizQuestion: using a custom ScriptScope

Figure 8.5 Calling the 
PassingVariablesTo-
CompiledCode function 
from listing 8.13 in direct 
succession to create a short 
chemistry quiz.
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{
  get
  {
    if (_askQuestion == null)
    {
      ScriptSource source =
        PythonEngine.CreateScriptSourceFromString(
        "input(Question) == CorrectResponse");

      _askQuestion = source.Compile();
    }
    return _askQuestion;
  }
}

private static ScriptScope _questionScope = null;
private static ScriptScope QuestionScope
{
  get
  {
    if (_questionScope == null)
    {
      _questionScope =
        PythonEngine.CreateScope();
    }
    return _questionScope;
  }
}

public static void PoseQuizQuestion(
  string question, object correctResponse)
{
  QuestionScope.SetVariable("Question", question);
  QuestionScope.SetVariable("CorrectResponse",
    correctResponse);

  Console.WriteLine("You chose... {0}",
    AskQuestion.Execute<bool>(QuestionScope)
      ? "wisely."
      : "poorly");
}

To clean up the code from listing 8.13, making it more efficient, the PoseQuiz-
Question function shown in listing 8.14 takes advantage of three properties imple-
mented as singletons:

1 PythonEngine—A singleton property of type ScriptEngine that ensures that
only one IronPython engine is instantiated by the application

2 AskQuestion—A property of type CompiledCode that encapsulates the concept of
a script required for asking questions and evaluating a response from the user

3 QuestionScope—A property of type ScriptScope that holds the Question to be
asked and the CorrectResponse to be evaluated against the response

With these singleton properties available, posing successive questions to the user in a
more efficient way is straightforward. The PoseQuizQuestion function invokes the
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SetVariable method on the ScriptScope returned by the QuestionScope property to
inject the two required variables into the local scope, not the global scope as shown
earlier. If the scope hasn’t yet been created, the singleton property accessor performs
the instantiation as required. The call to the Execute<T> method that follows should
look familiar:

  Console.WriteLine("You chose... {0}",
    AskQuestion.Execute<bool>(QuestionScope)
      ? "wisely."
      : "poorly");

Did you spot the difference as compared to the last line of C# code in listing 8.13?
Rather than pass no parameters to Execute<T>, the analog call in listing 8.14
instead passes the value obtained from the QuestionScope singleton. This allows
the Question and CorrectResponse variables referenced in the Python script to be
treated as local instead of global variables. Accordingly, the small script buried within
the AskQuestion property in listing 8.14 doesn’t include import statements as the
Python script in listing 8.13 did. 

 Because you pass your own ScriptScope when executing the script, the import
statements are no longer required. With these changes in place, subsequent calls to
the PoseQuizQuestion function will reuse the cached ScriptEngine, the cached Com-
piledCode, and the cached ScriptScope objects to present each question to the user.
This is much more efficient, as you can imagine.

 In addition to the SetVariable method shown in this example, the ScriptScope
class contains other useful methods for managing scope variables:

■ bool ContainsVariable(string name)—Test to see if a named variable exists 
■ T GetVariable<T>(string name)—Fetch the specified variable’s value as a spe-

cific type, throwing an exception when not found 
■ dynamic GetVariable(string name)—Fetch the specified variable’s value as a

dynamic object, throwing an exception when not found 
■ IEnumerable<string> GetVariableNames()—Iterate over the names of all of

the variables in the scope 
■ bool RemoveVariable(string name)—Eliminate the specified variable within

the scope 
■ bool TryGetVariable<T>(string name, out T value)—Attempt to fetch the

specified variable’s value as a specific type, returning true when found or
false otherwise 

■ bool TryGetVariable(string name, out dynamic value)—Attempt to fetch the
specified variable’s value as a dynamic object, returning true when found or
false otherwise 

Some of these ScriptScope methods are demonstrated in an upcoming example,
which shows how to create a simple, yet fully functional rules engine to an application
using the DLR.
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8.2.2 Adding a rules engine to your application

Scripting the behavior of an application in a completely open-ended way can be use-
ful. Using DLR hosting, exposing the entirety of a program’s object model to end-user
control in that way is possible. But it’s typically safer and more valuable to provide
users some restricted, domain-specific structures instead. For example, consider an
e-commerce program that needs complex, perpetually changing rules to be applied
for the discounting of items in a shopping cart. The Python code shown in listing 8.9
could be such a rule for a system like that. In essence, the rule in listing 8.9 says
the following:

■ If there are two or more clothing type items in the cart, apply a 5 percent dis-
count to the clothing items.

■ However, if more than five clothing items are in the cart, apply a 9 percent dis-
count to them.

■ If there are more than seven items in the shopping cart in total, apply an extra
3 percent discount to all the items in the cart, regardless of their category.

Now think about how you might write such a rule in a way that your business
users can understand. You probably couldn’t make any XML-based expression of
this rule discernible to the folks in your merchandising department. Although it’s
certainly possible to concoct a new dialect that’s friendlier to business users than
what’s shown in listing 8.9, the Python language comes pretty close without much
effort. This is even more true if the business users adhere to using the absolute
basics of the Python language for writing their rules: if-else statements and for
loops, for example. In the next section, we’ll show you how to create a generic
rules engine that allows rules like the one shown in listing 8.9 to execute in your
own applications.

AN E-COMMERCE EXAMPLE

Consider an object model that contains types called Cart, LineItem, and Product.
The user of the program has a single shopping Cart to which they add items for pur-
chase as they browse your store. Inside the Cart are zero or more LineItem objects,
representing the items in the cart. Each LineItem has a Quantity and a Product as
well as a Discount percentage to be applied during checkout.

 Figure 8.6 shows our sample ECommerceExample program executing the rule from
listing 8.9. Notice that the five Clothing type items have received a 5 percent discount
with an additional 3 percent discount applied to all of the items in the cart. This is in
keeping with the merchandising rule expressed in listing 8.9.

 Based on that merchandising rule, the customer would save $13.93 at check-
out. To make this possible, a class called UnsafeRuleEngine (partially shown in list-
ing 8.15) and an associated interface called IRule (shown in listing 8.16) are used
to do the work. The code in this simple example isn’t necessarily unsafe, but there’s
a better, potentially safer way we’ll you show later that makes the naming of this
sample appropriate.
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public class UnsafeRuleEngine
{
  private readonly ScriptRuntimeSetup _runtimeSetup;
  private readonly ScriptRuntime _sharedRuntime;
  private readonly Dictionary<int, RuleContext>
    _rulesContexts;
  private static int _nextHandle = 0;

  private struct RuleContext
  {
    internal IRule Rule;
    internal CompiledCode Code;
    internal ScriptScope SharedScope;
  }

  public UnsafeRuleEngine()
  {
    _runtimeSetup = new ScriptRuntimeSetup();
    _runtimeSetup.LanguageSetups.Add(
      new LanguageSetup(
        "IronPython.Runtime.PythonContext, IronPython",
        "IronPython",
        new[] { "IronPython", "Python", "py" },
        new[] { ".py" }));
    _sharedRuntime =
      new ScriptRuntime(_runtimeSetup);
    _rulesContexts =
      new Dictionary<int, RuleContext>();
  }
}

Listing 8.15 The basis of the UnsafeRuleEngine class

Figure 8.6 The running of the EcommerceExample sample. Using the rule shown in 
listing 8.9, eight items added to a shopping cart have been discounted. 
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The UnsafeRuleEngine class shown in the previous listing defines a private structure
called RuleContext that will be used to manage the rules that run within the engine,
the compiled versions of the rule code, and references to shared ScriptScope for
exchanging variables between the DLR host and the scripting engines. The Unsafe-
RuleEngine maintains a dictionary of these contexts to serve as a cache of precom-
piled script code.

TIP It’s certainly possible to run more than one type of scripting language
within a single rule engine, as shown in the MultiLanguageLoad example ear-
lier. For sheer simplicity, the example in listing 8.15 only shows the addition
of the Python language to the UnsafeRuleEngine. To include another lan-
guage, you only need to add the appropriate LanguageSetup during rule
engine construction.

The IRule interface shown in the following listing serves as the basis for any kind of
business rule.   

public interface IRule
{
  string Name { get; set; }
  string Address { get; set; }
  string Body { get; set; }
  string ContentType { get; set; }
  string[] ExpectedReturnValueNames { get; set; }
}

Every rule executed by the UnsafeRuleEngine must conform to this standard:

■ Name—The name of the rule (used strictly for convenience)
■ Address—The filename, database key, or user name that sourced the rule
■ Body—The source code of the rule
■ ContentType—The type of code expressed in the Body ( Python, Ruby, and so on)
■ ExpectedReturnValueNames—An array of variable names for which the rule

engine should fetch the associated values after executing the rule

The UnsafeRuleEngine stores references to newly added rules using the two methods
shown in the following listing. These insert and update methods use a private helper
method named UpsertRule shown in the listing.

public int InsertRule(IRule rule)
{
  int handle = -1;
  UpsertRule(rule, ref handle);
  return handle;
}

Listing 8.16 The IRule interface describes the script for a business rule

Listing 8.17 The InsertRule and UpdateRule methods of the UnsafeRuleEngine
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public void UpdateRule(int handle, IRule rule)
{
  UpsertRule(rule, ref handle);
}

private void UpsertRule(IRule rule,
  ref int handle)
{
  CompiledCode compilation = null;
  ScriptScope sharedScope = null;
  ScriptEngine engine = _sharedRuntime
    .GetEngineByFileExtension(
      rule.ContentType);
  sharedScope = engine.CreateScope();
  ScriptSource source = engine
    .CreateScriptSourceFromString(
      rule.Body);
  compilation = source.Compile();

  if (_rulesContexts.ContainsKey(handle))
    _rulesContexts.Remove(handle);
  else
    handle = System.Threading
      .Interlocked.Increment(
        ref _nextHandle);

  _rulesContexts[handle] =
    new RuleContext()
    {
      Rule = rule,
      Code = compilation,
      SharedScope = sharedScope,
    };
}

When a rule is inserted, an integer handle is returned to the caller. This handle can be
used to update the rule later. The UpsertRule method is where all the real work hap-
pens. After locating the relevant scripting language by the rule’s ContentType prop-
erty, the engine compiles the code and stores it in a new RuleContext, along with a
shared ScriptScope for use during future executions of the rule. Lastly, you need to
be able to execute rules within the UnsafeRuleEngine cache.

 The following listing shows the Execute method of the UnsafeRuleEngine class,
which allows the host application to run a rule by its integer handle, obtained from an
earlier insert or update operation.

public IDictionary<string, dynamic> Execute(
  int handle, IDictionary<string, object> parameters)
{
  RuleContext context =
    _rulesContexts[handle];
  ScriptScope scope = context.SharedScope;

Listing 8.18 The Execute method of the UnsafeRuleEngine class
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  foreach (var kvp in parameters)
    scope.SetVariable(kvp.Key, kvp.Value);

  context.Code.Execute(scope);

  var results = new Dictionary<string, dynamic>();
  if (context.Rule.ExpectedReturnValueNames != null
    && context.Rule.ExpectedReturnValueNames.Length > 0)
  {
    dynamic result;
    foreach (var valueName in
      context.Rule.ExpectedReturnValueNames)
    {
      if (valueName == null
        || valueName.Trim().Length == 0)
      {
        continue;
      }
      if (scope.TryGetVariable(
        valueName.Trim(), out result))
      {
        results.Add(valueName, result);
      }
    }
  }

  return results;
}

The Execute method also accepts a dictionary of named parameters to insert into the
ScriptScope before running the rule.

 Notice that the Execute method returns a dictionary of named dynamic objects
based on the names expressed in the property named ExpectedReturnValueNames in
the rule’s context.

CODE SOURCE The full source code to the ECommerceExample discussed here
is lengthy, so we’ve decided to print only the most relevant portions of it. To
get the full source code, visit http://metadotnetbook.codeplex.com and open
the chapter 8 samples.

After loading the merchandising rule shown in listing 8.11 into an IRule-derived vari-
able named discountRule, the following small bit of C# code will run the rule inside
any .NET object that implements a collection of properly structured LineItems:

var engine = new UnsafeRuleEngine();
var ruleHandle = engine.InsertRule(
  discountRule);
engine.Execute(
  handle: ruleHandle,
  parameters: new Dictionary<string, object>
    {{"cart", this}});

Notice that the parameters passed to the rule contain a single name-value pair named
cart. The value of that parameter is this, meaning that the object executing the code

http://metadotnetbook.codeplex.com


257The DLR hosting model
must be the so-called shopping cart that contains LineItems with Quantity, Discount,
and Product properties. Each of those Product objects must also implement a Category
property. As long as those conditions are satisfied, the rule will work as expected.
Looking back at listing 8.11, you’ll see that the Python script references such a cart
variable in that way. The Python script will update the Discount property of each
LineItem based on the merchandising preferences of its author.

A SAFER E-COMMERCE EXAMPLE

Now that you’ve seen how simple it is to execute a Python-based business rule against
an arbitrary .NET object, we unfortunately owe it to you to make things a bit more
complex. The problem with your UnsafeRuleEngine is that it gives too much author-
ity to executing scripts. The discount rule as shown in listing 8.11 is okay because it
only updates the Discount property of the line items in the cart. But what if it weren’t
so well behaved? What if the script modified the Price property of each Product in a
way that caused the company to lose money on each transaction? Outside of the
issues related to the script’s own authority, what if a near-simultaneous execution of
the same script inserted a different cart object into the shared ScriptScope at the
wrong moment?

 The DLR hosting model offers three levels of isolation to address these concerns. At
the highest level, each execution event can be assigned a different ScriptScope. This
will allow a single ScriptEngine to isolate the variables used during execution from
all other executions that may be occurring at the same time. Scope isolation won’t
solve the errant script problem described previously, but it can address some other con-
cerns. Lower in the DLR hosting stack, the programmer could choose to create a new
ScriptRuntime each time script code is executed. That would be highly inefficient, so
you might instead cache a ScriptRuntime per rule instead. That would tackle the
same set of problems that scope isolation addresses and potentially some others by giv-
ing each rule its own private runtime. But runtime isolation still allows scripts to mod-
ify any objects they gain access to in ways that may not be appropriate.

 The DLR hosting model provides a third type of isolation, which can solve the
errant script problem. As depicted in figure 8.7, the programmer may create an applica-
tion domain that separates the execution environment of scripts from that of the
host application.

 Various .NET objects to be injected into the script scope must be serialized across
the AppDomain boundary or marshaled as reference types as desired. The following
listing shows the complete RuleEngine class to replace the UnsafeRuleEngine
described earlier.

using System;
using System.Dynamic;
using System.Collections.Generic;
using Microsoft.Scripting.Hosting;

Listing 8.19 A (potentially) safer RuleEngine class
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namespace DevJourney.Scripting
{
  public enum IsolationMode { Shared, Private }

  public class RuleEngine
  {
    private readonly ScriptRuntimeSetup _runtimeSetup;
    private readonly ScriptRuntime _sharedRuntime;
    private readonly Dictionary<int, RuleContext>
      _rulesContexts;
    private readonly AppDomain _remoteAppDomain;
    private static int _nextHandle = 0;

    private struct RuleContext
    {
      internal IRule Rule;
      internal CompiledCode Code;
      internal ScriptScope SharedScope;
      internal bool IsIsolatedRuntime;
    }

    public RuleEngine(IsolationMode appDomainMode)
    {
      _runtimeSetup = new ScriptRuntimeSetup();
      _runtimeSetup.LanguageSetups.Add(
        new LanguageSetup(
          "IronPython.Runtime.PythonContext, IronPython",
          "IronPython",
          new[] { "IronPython", "Python", "py" },
          new[] { ".py" }));
      if (appDomainMode == IsolationMode.Private)
        _remoteAppDomain = AppDomain.CreateDomain(
          DateTime.UtcNow.ToString("s"));
      _sharedRuntime =
        (_remoteAppDomain != null)
          ? ScriptRuntime.CreateRemote(
            _remoteAppDomain, _runtimeSetup)
          : new ScriptRuntime(_runtimeSetup);
      _rulesContexts =
        new Dictionary<int, RuleContext>();
    }

    public IRule SelectRule(int handle)
    {
      lock (_rulesContexts)
      {
        if (!_rulesContexts.ContainsKey(handle))
        throw new ArgumentOutOfRangeException(
          "handle", String.Format("The rule " +
          "context with handle {0} cannot be " +
          "selected from the cache because it " +
          "does not exist.", handle));
        return _rulesContexts[handle].Rule;
      }
    }

    public int InsertRule(IRule rule,
      IsolationMode runtimeMode)
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    {
      lock (_rulesContexts)
      {
        int handle = -1;
        UpsertRule(rule, ref handle,
          runtimeMode);
        return handle;
      }
    }

    public void UpdateRule(int handle, IRule rule,
      IsolationMode runtimeMode)
    {
      lock (_rulesContexts)
      {
        if (!_rulesContexts.ContainsKey(handle))
          throw new ArgumentOutOfRangeException(
            "handle", String.Format("The rule " +
            "context with handle {0} cannot be " +
            "updated in the cache because it " +
            "does not exist.", handle));
        UpsertRule(rule, ref handle,
          runtimeMode);
      }
    }

    public void DeleteRule(int handle)
    {
      lock (_rulesContexts)
      {
        if (!_rulesContexts.ContainsKey(handle))
          throw new ArgumentOutOfRangeException(
            "handle", String.Format("The rule " +
            "context with handle {0} cannot be " +
            "deleted from the cache because it " +
            "does not exist.", handle));
        if (_rulesContexts[handle].IsIsolatedRuntime)
        {
          _rulesContexts[handle].Code.Engine
            .Runtime.Shutdown();
        }
        _rulesContexts.Remove(handle);
      }
    }

    public IDictionary<string, dynamic> Execute(
      int handle,
      IDictionary<string, object> parameters,
      IsolationMode scopeMode)
    {
      RuleContext context;
      lock (_rulesContexts)
      {
        if (!_rulesContexts.ContainsKey(handle))
          throw new ArgumentOutOfRangeException(
            "handle", String.Format("Rule handle " +
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            "{0} was not found in the rule cache.",
            handle));
        context = _rulesContexts[handle];
      }

      ScriptScope scope =
        (scopeMode == IsolationMode.Private)
          ? context.Code.Engine.CreateScope()
          : context.SharedScope;
      foreach (var kvp in parameters)
        scope.SetVariable(kvp.Key, kvp.Value);
      context.Code.Execute(scope);
      var results = new Dictionary<string, dynamic>();
      if (context.Rule.ExpectedReturnValueNames != null
        && context.Rule
            .ExpectedReturnValueNames.Length > 0)
      {
        dynamic result;
        foreach (var valueName in
          context.Rule.ExpectedReturnValueNames)
        {
          if (valueName == null
            || valueName.Trim().Length == 0)
          {
            continue;
          }
          if (scope.TryGetVariable(
            valueName.Trim(), out result))
          {
            results.Add(valueName, result);
          }
        }
      }
      return results;
    }

    private void UpsertRule(IRule rule,
      ref int handle, IsolationMode runtimeMode)
    {
      if (rule == null)
        throw new ArgumentNullException("rule");
      lock (_rulesContexts)
      {
        CompiledCode compilation = null;
        ScriptScope sharedScope = null;
        ScriptRuntime runtime =
          (runtimeMode == IsolationMode.Private)
            ? (_remoteAppDomain != null)
              ? ScriptRuntime.CreateRemote(
                  _remoteAppDomain,
                  _runtimeSetup)
              : new ScriptRuntime(_runtimeSetup)
            : _sharedRuntime;
        ScriptEngine engine = runtime
          .GetEngineByFileExtension(
            rule.ContentType);
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        sharedScope = engine.CreateScope();
        ScriptSource source = engine
          .CreateScriptSourceFromString(
            rule.Body);
        compilation = source.Compile();

        if (_rulesContexts.ContainsKey(handle))
          DeleteRule(handle);
        else
          handle = System.Threading
            .Interlocked.Increment(
              ref _nextHandle);

        _rulesContexts[handle] =
          new RuleContext()
          {
            Rule = rule,
            Code = compilation,
            SharedScope = sharedScope,
            IsIsolatedRuntime =
              (runtimeMode == IsolationMode.Private)
          };
      }
    }
  }
}
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Highlighting the differences between the UnsafeRuleEngine and the new RuleEngine
class, the first thing to notice is the existence of an enumerated type called Isolation-
Mode. Values of this type can be used in the RuleEngine class to enable all three isola-
tion modes supported by the DLR hosting model. The first and most important of
these is AppDomain isolation, which you can enable by passing IsolationMode.Private
to the RuleEngine constructor. Doing so forces the RuleEngine to create a new App-
Domain on behalf of the host application in which all the rules inserted into the
RuleEngine will be run.

 The next type of DLR hosting isolation that can be enabled using the RuleEngine class
is ScriptRuntime isolation. To do so, pass IsolationMode.Private as the runtimeMode
parameter when calling the InsertRule or UpdateRule methods. This will cause that
particular rule to be run in its own ScriptRuntime each time it’s executed. Under-
stand, though, that runtime isolation is separate and distinct from AppDomain isola-
tion. You could force the creation of a separate AppDomain and then use a shared
ScriptRuntime for all the rules that run within it, for example. You may also run mul-
tiple rules within the local AppDomain but separate their execution by using different
runtimes. You’re free to choose the isolation models to suit your needs.

 The new RuleEngine class also supports ScriptScope isolation. To enable that,
pass IsolationMode.Private as the scopeMode parameter when calling the Execute
method. Scope isolation is orthogonal to both AppDomain and ScriptRuntime isola-
tion. With the new RuleEngine class, you’re free to choose the combination of all
three isolation strategies that make sense for your application.

MARSHALING AND SERIALIZATION OF .NET TYPES VIA SCRIPTSCOPE

The RuleEngine class allows for the execution of rules in a separate AppDomain, which
is much safer than allowing them to run inside your host program’s AppDomain. But
enabling rules to run remotely is half the battle. As depicted in figure 8.7, there are
two ways to prepare objects for movement or use across an AppDomain boundary. In
the ECommerceExample, you might derive the Cart class from MarshalByRefObject
like this:

public class Cart : MarshalByRefObject

After invoking the SetVariable method of the ScriptScope class to inject the Cart
object into the execution scope, the DLR Hosting API code will be able to marshal the
object reference into the remote AppDomain. The script code running there will be
able to access the Cart object as if had been instantiated locally. This works well, but it
still allows the script to modify properties of the cart’s line items which it shouldn’t
have access to. Also, if your domain objects already have a base class that can’t be mar-
shaled, this solution may not work for you.

 Another way to move the .NET Cart objects back and forth across the AppDomain
boundaries is to mark them as [Serializable], like this:

 [Serializable] public class Cart
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This also allows the DLR Hosting API to copy the Cart into the remote AppDomain for
access by the script. The word copy here is the key to understanding the major differ-
ence between the MarshalByRefObject method and the [Serializable] method for
setting and fetching variables in the ScriptScope. When a [Serializable] Cart
object is inserted into the ScriptScope, a copy of it is made available in the remote
AppDomain. If the script modifies the Cart in any way, it will have modified only its
copy, not the original.

 There’s even more work to be done when using such pass-by-value semantics for
your .NET types. Some members of those types may not serialize properly, so you’ll
have to mark them as [NonSerialized] to keep them from making the trip across the
AppDomain boundary. Furthermore, you’ll have to fetch the modified Cart from the
ScriptScope when the rule execution is complete. Lastly, because the modified Cart
is a copy, you’ll need to compare it to the one you sent over before execution to see
what changes were made. In the following listing you see two new Cart methods that
handle this work: CompareModifiedLineItem and UpdateFromModifiedCart.

private bool CompareModifiedLineItem(
  LineItem original, LineItem modified, int ndx)
{
  if (modified == null)
    throw new ApplicationException(
      String.Format("After recalculating " +
        "the cart value, line item {0} was " +
        "null. The discount script must not " +
        "remove line items.", ndx));
  if (modified.Product == null)
    throw new ApplicationException(
      String.Format("After recalculating " +
        "the cart value, the product on " +
        "line {0} was null. The discount " +
        "script must not modify the " +
        "products.", ndx));
  if (!original.Product.Equals(modified.Product))
    throw new ApplicationException(
      String.Format("After recalculating " +
        "the cart value, the product on " +
        "line {0} was different from the " +
        "original. The discount script " +
        "must not modify the products.", ndx));
  if (original.Quantity != modified.Quantity)
    throw new ApplicationException(
      String.Format("After recalculating " +
        "the cart value, the quantity on " +
        "line {0} was different from the " +
        "original. The discount script " +
        "must not modify quantities.", ndx));
  return (original.Discount != modified.Discount);
}

Listing 8.20 Methods for comparing and updating a modified shopping cart
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private void UpdateFromModifiedCart(
  Cart modifiedCart)
{
  if (modifiedCart == null)
    throw new ApplicationException(
      "The modified cart was not returned " +
      "from the discount script as expected.");
  if (LineItems.Length !=
      modifiedCart.LineItems.Length)
    throw new ApplicationException(
      String.Format("After recalculating the " +
        "cart value, {0} line items were " +
        "expected but {1} items were found. " +
        "The discount script must not add " +
        "or remove line items.", LineItems.Length,
        modifiedCart.LineItems.Length));
  for (int ndx = 0; ndx < LineItems.Length; ndx++)
  {
    LineItem original = LineItems[ndx];
    LineItem modified =
      modifiedCart.LineItems[ndx];
    if (CompareModifiedLineItem(
      original, modified, ndx))
    {
      original.Discount = modified.Discount;
    }
  }
}

The UpdateFromModifiedCart method should be called immediately after execution
of the discount rule. This will check that the script did not attempt to modify proper-
ties other than each LineItem Discount. Such a safety check is optional, but it’s highly
recommended for catching rogue scripts during preproduction and debugging. After
the safety checks are complete, only the modified Discount properties are allowed to
be updated in the original Cart object’s LineItems. Perhaps you can see why App-
Domain isolation using [Serializable] objects is the safest way to integrate a rules
engine into your .NET application. The full source code of the ECommerceExample
available at http://metadotnetbook.codeplex.com contains complete working Rule-
Engine and Cart classes that demonstrate AppDomain, ScriptRuntime, and ScriptScope
isolation as well as the selectable use of pass-by-reference or pass-by-value semantics.

8.3 Summary
In closing this chapter, we note that Microsoft’s DLR represents something of a conun-
drum in the history of the .NET Framework. The DLR appeared with some fanfare at
the MIX conference in 2007, and by the time of Microsoft’s Professional Developer
Conference (PDC) in 2008, the industry was abuzz about the impossible coming true.
Microsoft was finally going to embrace dynamic languages as first-class citizens in the
.NET Framework. Or so it seemed. In some rather high-profile demonstrations at PDC
2008, we saw how a statically typed language like C# could evolve by adopting some

http://metadotnetbook.codeplex.com
http://metadotnetbook.codeplex.com
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dynamic language features, too. We also saw evocative demonstrations of C# and
Visual Basic working seamlessly with JavaScript, Python, and Ruby by way of the DLR.
For those who appreciate the power of dynamic languages, a sense of eagerness and
hope was growing in those days.

 But as the saying goes, if something seems too good to be true, it probably is. By
the time Visual Studio 2010 shipped with a dynamic version of C# in April 2010, the
IronPython and IronRuby teams had been dramatically reduced in size. The budding,
DLR-based JavaScript engine seen only briefly in 2008 had vanished entirely by 2010. A
few voluntary departures from those teams lent credence to the rumors that the “Iron
Languages” were dead on arrival. By October 2010, when Microsoft moved the DLR
source code into the public domain under the Apache License V2.0 and the “father of
IronPython” left the company, the death knell for dynamic languages on the .NET
Framework seemed to be ringing loud and clear for most people.

 However, not everyone saw those developments with complete pessimism. In late
2009, key members of the DLR and IronPython teams had been moved to a secret
project in the Windows OS group. Members of various language teams had joined
them, working on related and equally secret projects. Based strictly on the talent and
experiences of the people involved, something good seemed to be brewing at Micro-
soft. At the BUILD 2011 conference, Microsoft finally let the cat out of the bag, as the
saying goes, when it announced Windows 8, a new OS-specific JavaScript engine
(WinJS), and the new Windows Runtime (WinRT). Yet few people recognized the sub-
lime connection between the underpinnings of DLR and the new development frame-
work for Windows 8.

 At some point in mid-2009, someone important inside Microsoft probably realized
what the DLR was truly all about. It wasn’t about Python. It wasn’t about Ruby. The
DLR wasn’t even about adding dynamic features to languages like C# and Visual Basic.
The DLR’s raison d’être, they likely surmised, was to provide a language of languages for
the .NET Framework. The plumbing that the DLR team defined to enable IronPython
and IronRuby would allow any set of compliant languages to communicate and to
interoperate. The DLR had enabled something wonderful to happen between lan-
guages that even the rich metadata model of the CLR could not enable on its own.

 The beauty of such an idea is apparent: many programming languages interoperat-
ing without expensive ceremony, exchanging data and invoking functions freely
between them. That sounds wonderful, right? So why did Microsoft abandon the DLR,
and how does Windows 8 help to accomplish the same objectives in better fashion?
Unfortunately, the DLR language-interoperability features are implemented in the
wrong way and at the wrong level of the capability stack to make them truly useful for
non-dynamic languages.

 In large measure, the interface-level conventions of the DLR described in this
chapter have been superseded in Windows 8 by metadata-level conventions in WinRT.
In fact, the same metadata model of .NET, known as ECMA 335 Partition II, has been
implemented at the OS level in Windows 8 with a few new extensions. Having the rich
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metadata to which we’ve become accustomed in .NET at the lowest levels of the OS
allows for excellent, native interoperability between languages like JavaScript (WinJS),
C++, C#, and Visual Basic. 

 Rather than seeing the “death of the DLR” as catastrophic, we see hope instead.
With .NET’s metadata model in place at the lowest level of the OS, future WinRT-specific
implementations of Python, Ruby, and other programming languages could be devel-
oped for Windows 8. Those as-yet-unseen WinRT implementations of Python and
Ruby won’t require a hosting model at all. They will interoperate with other WinRT
languages as first-class citizens, putting to rest the rumors about Microsoft’s commit-
ment to language choice once and for all. 

 We hope you’ll join us in being optimistic about the future of dynamic languages
and metaprogramming in general within the Microsoft ecosystem.



Languages and tools
Throughout this book, you’ve seen C# used (and potentially abused!) to facilitate
metaprogramming. In some cases, external components (like NRefactory and
Cecil) were used because they provided functionality necessary to support meta-
programming. Although C# is a powerful programming language that you can use
to create concise, flexible programs, at times in this book C# may have felt twisted
and bent to service metaprogramming needs.

 This isn’t too surprising, because you could argue that C# wasn’t designed with
metaprogramming as a deep, core aspect. But programming languages have been
created that allow you to modify the language as it executes. These languages, cre-
ated after the initial 1.0 release of .NET, have metaprogramming facilities built in.
Furthermore, tools have been created for .NET languages to allow you to handle
concepts such as code injection and aspect-oriented programming (AOP). This
chapter introduces you to languages that make metaprogramming straightforward
and easy to use, and to tools that lower the barrier of dynamic programming in C#.

This chapter covers
■ An introduction to languages that contain 

native metaprogramming constructs
■ An overview of tools that provide dynamic 

programming facilities for C#
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Let’s start by looking at a couple of different metaprogramming-based languages that
target the CLR.

9.1 A survey of languages
In this section, you’ll see how metaprogramming works in two languages—Boo and
Nemerle—but the first stop is back in C#. You’ll revisit the idea of code as data that you
saw in chapter 6 and see how it works in C#. With this little expression refresher in
mind, you’ll have a solid base to understand how these other languages lift metapro-
gramming from an expression API into a first-class language feature. 

9.1.1 C# and expression limitations

In chapter 6, you saw how the Expression API let you manipulate coding structures at
runtime. For example, consider the following statement:

Expression<Func<int, int, int>> add = (x, y) => x + y;
var result = add.Compile()(2, 3);

You know that the add variable refers to an expression tree. This tree consists of a
BinaryExpression for the add operation and two ParameterExpression nodes that
represent the x and y parameters to the expression. The expression tree isn’t executable
in its current form; you have to compile it to create a method that you can invoke.

 Most of the content in chapter 6 revolves around expressions from an API stand-
point. You didn’t create expressions using the preceding inline coding approach; you
formulated expressions by using static methods on the Expression class. Although
this works, wouldn’t it be nice if C# handled expressions within the language itself?
For example, let’s look at a fictitious bit of C# code that contains a symbol that doesn’t
exist within C#, but imagine for a second if the backtick character worked like this:

var add = `(x, y) => x + y;

Note that this isn’t the single-quote character used to define char values in C#. This is
that “bent” character called the backtick. Either way, it doesn’t matter because it isn’t
valid C#. The point is this: right now, you can’t declare an expression and assign it to a
variable type via inference in C#. You have to explicitly type the variable so C# knows you
want an expression, not a lambda. But that’s a fair amount of ceremony to get your
expression. Having one character would make it far easier to generate expressions in C#.

 Here’s another limitation of expressions. Consider this piece of C# that isn’t valid
and won’t compile:

Expression<Func<TextWriter, int>> a = (writer) =>
{
  var x = new Random().Next();
  writer.WriteLine(x);
  var q = 11 + x;
  writer.WriteLine(q);
  return q;
};
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Why won’t it compile? C# doesn’t support multiline expressions. You can create com-
plex expressions via the Expression API, but you can’t do it as a declared expression in
C# code. It has to be one line of code.

 The beauty of expressions is that they give you the ability to create dynamic code
without the mess and fuss of learning IL. But you don’t get that beauty natively in C#,
and frankly, once you start playing with expressions, you start to wish that C# would
somehow get that elegance right into the language in the next version.

 To be honest, the creators and maintainers of C# get lots of requests from develop-
ers to add all sorts of features into the language, so it’s understandable that it can’t do
everything one may hope for. But other .NET languages have built expression-building
capabilities directly into their feature set. These languages make it almost trivial to
come up with functions that can be manipulated at runtime, and in some cases allow
you to redefine the language itself. Let’s start your language journey with Boo.

9.1.2 Boo and metaprogramming

The first language you’ll look at is called Boo. If you’ve ever worked with (or at least
seen) Python, you’ll feel right at home with Boo. Boo has quite a few metaprogram-
ming facilities that you can take advantage of in a natural way within the language
itself. Let’s start by seeing a simple Boo code snippet so you can get a feel for the struc-
ture of the language.

A SIMPLE CLASS IN BOO

Although Boo isn’t a strict derivative of Python, there are a fair amount of similarities.
Here’s a simple class definition in Boo:

import System

class Data:
  def constructor():
    pass

  def constructor(value as Guid):
    _value = value

  [Getter(Value)]
  _value as Guid

[STAThread]
def Main(args as (string)):
  print(Data().Value)
  print(Data(Guid.NewGuid()).Value)

As in Python, whitespace is key to define and scope code in Boo. That’s why the meth-
ods are indented from the class definition, and the method’s implementation is
indented from the method definition. It doesn’t take long to read Boo code and
understand what it’s doing. You know you have a class called Data with two construc-
tors. You also have a Main() method where you print information to the console win-
dow. Creating an object in Boo doesn’t require the new keyword like you have in C#—
you type the name of the class with parenthesis and you’re done.
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 There’s one odd bit of code in Boo that may take some getting used to:
the GetterAttribute. In Boo, if all you want is a getter for a property, you can use the
GetterAttribute. If you want a write-only field, you can use a SetterAttribute—
the PropertyAttribute defines a read-write property. Note that the name of the attri-
bute is specified as an argument to the attribute, and the code right after it defines the
backing field for the property. 

 It isn’t strictly true that you must use attributes for property definitions. The follow-
ing Boo code defines a Value property that acts the same way as the Value property in
the Data class:

Value as Guid:
  get:
    return _value

_value as Guid

The GetterAttribute class is a special kind of attribute that’s treated much differ-
ently in Boo than other attributes. It’s a kind of AbstractAstAttribute that modifies
the code as it’s compiled. This kind of power can lead to all sorts of cool code manipu-
lation, but before you dive into these special attributes in detail, let’s take a look at
how you can define chunks of Boo code directly in AST format.

UNDERSTANDING CODE LITERALS IN BOO

One of the cool things Boo lets you do is define functions as trees, as you can in C#
with the Expression API. But although Boo has its own API that’s similar to the LINQ
Expression API, you’re not confined to going through API calls to create a tree. Let’s
start with a simple addition method in Boo:

def Add(x as int, y as int):
  return x + y

If you represented this as a tree structure via Boo’s AST API, it would look something
like the code in the following listing.

import Boo.Lang.Compiler.Ast

xParameter = ParameterDeclaration(
  Name: 'x', 
  Type: SimpleTypeReference(Name: 'int'))
yParameter = ParameterDeclaration(
  Name: 'y', 
  Type: SimpleTypeReference(Name: 'int'))
parameters = ParameterDeclarationCollection()
parameters.Add(xParameter)
parameters.Add(yParameter)

apiAdd = Method(
  Name: 'LiteralAdd', 
  Parameters: parameters,
  Body: Block(ReturnStatement(BinaryExpression(

Listing 9.1 Representing a Boo method with the AST API
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    Left: Expression.Lift(xParameter), 
    Right: Expression.Lift(yParameter), 
    Operator: BinaryOperatorType.Addition))))

This should feel like creating a LINQ expression. You create parameters with the
ParameterDeclaration class, specifying their names and types. Then you add them to
a Method, which also specifies the name of the method. The Block class contains the
implementation of the method, which is a BinaryExpression that adds the two
parameter values together. 

 Now here’s the fun part:

literalAdd = [| 
  def QuotedAdd(x as int, y as int):
    return x + y 
|]

That’s the same thing as the code in listing 9.1! Boo defines the quasi-quotation mark-
ers, [| and |], to let you specify code literals in your code without having to go
through the gyrations of an API. You express your intention as naturally as you would
any other piece of Boo code, except that in this case, this isn’t executable code; it’s
code in tree format.

 Now that you have an expression tree, you want to be able to execute it. In the next
section, you’ll see how you can compile Boo code. 

COMPILING BOO CODE AT RUNTIME

To compile Boo fragments, you use the compile() method from the Boo.Lang.Compiler
.MetaProgramming assembly. Here’s how it looks:

import Boo.Lang.Compiler.MetaProgramming

literalAdd = [| 
  class QA:
    static def QuotedAdd(x as int, y as int):
      return x + y 
|]

compiledLiteralAdd as duck = compile(literalAdd)
print(compiledLiteralAdd.QuotedAdd(5, 6))

This code is slightly modified from the literalAdd fragment from the last section. It’s
been redefined as a static on a class called QA. Now, when you compile() the frag-
ment, you assign it to a variable using the duck keyword. Boo supports duck typing
such that method calls are resolved at runtime. Therefore, as long as there’s a Quote-
dAdd method on the class, the method call will resolve correctly.

 What’s nice about Boo is that it also has the parser exposed as an API. This means
you can compile code fragments that are contained within strings if you want. Con-
sider the following code:

import Boo.Lang.Compiler.MetaProgramming
import Boo.Lang.Parser 

stringifiedAdd = """
class SA:
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  static def stringifiedAdd(x as int, y as int):
    return x + y
"""

compiledStringifiedAdd as duck = compile(BooParser.ParseString(
  'SA', stringifiedAdd)).GetType('SA')
print(compiledStringifiedAdd.stringifiedAdd(11, 22))

The triple double quotes allow you to span a string across multiple lines—you get the
same effect in C# if you put the @ symbol in front of a string declaration. Within
the stringifiedAdd string, you define a class with a method. That code is compiled
with the ParseString() method on BooParser. That method returns a CompileUnit
object, which you can pass into the compile() method you saw in the last section. In
this case, you’re getting a standard System.Reflection.Assembly object from the
compile() call, so a simple call to GetType() is all it takes to duck-type the return value
so your call to stringifiedAdd() works.

 At this point, hopefully it’s clear that Boo provides a lot of dynamic programming
capabilities. But your brief Boo tour isn’t over yet. Now that you know how code frag-
ments and code generation work in Boo, let’s revisit the concept of AST attributes.

INJECTING BOO CODE AT COMPILATION WITH AST ATTRIBUTES

In the subsection “A simple class in Boo,” you saw the GetterAttribute. This is a class
that has AbstractAstAttribute as its base class. Technically, this isn’t a .NET attribute
that you’re used to, like the STAThreadAttribute used on the Main() method from the
code sample. It doesn’t get compiled into the assembly as metadata. Rather, these AST
attributes are detected by the Boo compiler and inject code into the resulting assem-
bly. Therefore, you can control the shape and behavior of code by putting reusable
bits of code generation in AST attributes. Let’s create a simple method-tracing attri-
bute to see how easy it is to add code to your applications. The following listing shows
what that attribute looks like.

import Boo.Lang.Compiler
import Boo.Lang.Compiler.Ast
import System

class TraceAttribute(AbstractAstAttribute):
  def Apply(type as Node):
    target = type as ClassDefinition

    if target is null:
      raise ArgumentException(
        "TraceAttribute can only be applied to classes.", 
        "type")

    for member in target.Members:
      method = member as Method
      continue if method is null
      method.Body = [|
        Console.Out.WriteLine(string.Format(

Listing 9.2 Creating a trace attribute in Boo
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          "Method {0} started.", $(method.FullName)))
        $(method.Body)
        Console.Out.WriteLine(string.Format(
          "Method {0} finished.", $(method.FullName)))
      |]

The intent of this attribute is to add tracing to every method in a class. Therefore, the
first thing you need to do is make sure the attribute has been associated with a class.
The Apply() method is called by the Boo compiler, and type is the AST node that the
attribute is associated with. That’s why type is cast as a ClassDefinition object—if
that fails, Apply() will throw an ArgumentException. If TraceAttribute is associated
with a class, you need to iterate over every method in the class. Here’s where Boo’s
metaprogramming facilities shine. When you find a method, you transform its imple-
mentation by altering the Body property. You inject two calls to the Console, before
and after the original body definition (you definitely can’t lose that original code!).
You use the splice operator (the dollar sign, $) to inject expressions into the expres-
sion tree, such as the method’s name and body.

 To use this attribute, you have to compile it into a separate assembly first. Boo can’t
have the attribute definition in a Boo file that wants to use the attribute. Once you
have the compiled attribute, using it is a line of code away:

import System

[Trace]
class TracedClass:
  def TraceMe():
    Console.Out.WriteLine("I should have been traced.")

TracedClass().TraceMe()

Figure 9.1 shows what happens when you run this code.
 Even with a simple example, you can immediately see how powerful a language

becomes when metaprogramming is in the forefront. With code fragments, splicing,
and AST attributes, you have the freedom in Boo to separate and combine code as you
see fit.

 We’ll wrap up our discussion of metaprogramming in Boo with a quick look
at macros.

Figure 9.1 Method tracing in Boo. By moving the tracing logic to an attribute that’s injected 
into a method at compile time, your code is reusable and easier to read.
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MACROS IN BOO

Macros are powerful constructs that act like functions. They work on statements dur-
ing the compilation process. Take a look at this simple macro:

import Boo.Lang.Compiler
import Boo.Lang.Compiler.Ast
import System

macro power:
  yield [| Console.Out.WriteLine(
    Math.Pow($(power.Arguments[0]), $(power.Arguments[1]))) |]

You define macros via the macro keyword. Notice that you don’t explicitly declare the
arguments to the macro, though you can do that if you want. In this example, you’re
generating code that will write the results of a Math.Pow() call. Macros are like AST
attributes in that you have to compile them into a separate assembly first and then you
reference them in another code file:

[STAThread]
def Main(args as (string)):
  power 3.2, 4.2

If you use a decompiler like ILSpy, you can see what ends up in the Main() method (in
C# format):

[STAThread]
public static void Main(string[] args)
{
  Console.Out.WriteLine(Math.Pow(3.2, 4.2));
}

Boo adds the macro expansion to the compiler pipeline, so the entire line of code is
now part of the resulting implementation.

 This example is quite simple—in fact, you may wonder why you wouldn’t make a
call to Math.Pow() directly. The reason you want to use macros is to provide a way to
add keywords to Boo to provide simplicity to code structures. Here’s what the using
macro in Boo does:

using file=File.OpenText(name):
  print(file.ReadLine())

Code-generation constructs such as the using statement in C# are done internally—
you have no way to provide code during the compilation process. With macros, you’re
free to add implementations to your Boo programs as you see fit. In this case, the
using macro generates all the code to make sure the file object is disposed of cor-
rectly within a finally block.

 Now that you’ve seen what can be done in Boo, let’s shift gears and take a look at
Nemerle, a C#-like language that has similar metaprogramming constructs.
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9.1.3 Nemerle and metaprogrammg

There’s another CLR-based language that you can use to satisfy your metaprogram-
ming needs, in particular if you feel comfortable in a language that uses C-like con-
structs, like curly braces and semicolons. Nemerle uses macros as its vehicle to drive
metaprogramming in its language. Let’s see how macros work in Nemerle.

MACROS IN NEMERLE

Nemerle has macros similar to Boo. In fact, macros are the key to metaprogramming
in Nemerle. You’ll see in the next section how you can use macros to modify types, but
let’s start by looking at a deceptively simple Nemerle macro:

using System;

macro @^^(x, y) 
  syntax(x, "^^", y) {
    <[ Math.Pow($x, $y) ]>
}

The <| and |> operators are similar to the ` (backtick) in Boo. Therefore, you can
deduce that this macro will perform the power operation on x and y. Also, macros
need to be compiled into their own assemblies before they can be referenced in Nem-
erle code, like in Boo. The interesting difference in Nemerle is that you can provide a
syntax keyword that Nemerle understands when it’s used in code. In this macro, the
syntax is "^^" with the two arguments on either side of the syntax node. This is what it
looks like when you use the macro:

System.Console.WriteLine (3.0 ^^ 5.0);

That’s slick. It looks like you added a new operator to Nemerle, and, in fact, you have.
As long as a developer uses your macro assembly, they can use "^^" whenever they
want to perform a power function.

 Not every code transformation works at a statement level. Adding method-tracing–
like functionality such as the Boo Trace AST attribute you saw in the section ”Injecting
Boo code at compilation with AST” requires access to the type itself. Fortunately, Nem-
erle provides this support with custom attributes. Let’s see how you can create a Nem-
erle attribute to add tracing to all methods in a class.

USING MACROS FOR TYPE MODIFICATION

Macros in Nermele can be used to perform all sorts of code modifications. The follow-
ing listing shows a macro that adds tracing to every method in a type.

using Nemerle;
using Nemerle.Compiler;
using Nemerle.Compiler.Parsetree.ClassMember;
using System;

[MacroUsage(MacroPhase.WithTypedMembers, MacroTargets.Class, 
  Inherited = true, AllowMultiple = false)]

Listing 9.3 A tracing macro in Nemerle
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macro Trace (type : TypeBuilder)
{
  foreach (method : IMethod in type.GetMethods(
    BindingFlags.Public | BindingFlags.Instance | BindingFlags.Static))
  {
    match(method) 
    {
      | builtMethod is MethodBuilder =>
        builtMethod.Body =
          <[ 
            Console.Out.WriteLine(string.Format(
              "Method {0} entered.", $(method.Name : string)));
            $(builtMethod.Body);
            Console.Out.WriteLine(string.Format(
              "Method {0} finished.", $(method.Name : string)));
          ]>;
      | _ => { }
    }
  }
}

Although Nemerle looks like C#, it has some distinct differences, so let’s cover this
code in detail. The first thing you do is mark this macro with a MacroUsageAttribute.
You need to specify what phase of the compilation process you’re interested in having
this macro execute with the MacroPhase enumeration. You could specify a value like
BeforeInheritance, but in this case, you want to wait until all the methods have been
declared, which is why WithTypedMembers is used. You also need to specify the target;
in this macro, the target is a class. You also need to provide some arguments so you
can get access to the right members in your macro code, which is what the Type-
Builder-based type argument is for.

 Once your macro is invoked, you need to visit all the methods in the type. The
GetMethods() call returns a list of IMethod-based objects, but you need to work with
methods that are of type MethodBuilder. That’s what the match() statement is for. It’s
a pattern-based approach to invoke code based on certain conditions. In this case,
your code modification will run only if the current method is of the MethodBuilder
type. Otherwise, the macro does nothing to that method.

 Once you have a MethodBuilder object, adding tracing to the method is pretty sim-
ple. You create the code with the appropriate WriteLine() calls, keeping the original
body of the method intact. Like the Boo tracing macro, you’re not diving into the
body of the method to ensure the “finished” message happens whenever the method
returns control to the calling method, but you could visit the method body and put
the messages in the right spots.

 Using this macro is an attribute declaration away:

using System;

module Program
{
  [Trace]
  public class TracedTest
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  {
    public TraceMe() : void
    {
      Console.Out.WriteLine("I should have been traced.");
    }
  }

  Main() : void
  {
    TracedTest().TraceMe();
  }
}

TIP Both Boo and Nemerle produce .NET assemblies that contain their com-
piler pipeline, AST definitions, and so on. It’s definitely possible to define the
macros for both languages in C# or VB by referencing the appropriate Boo or
Nemerle assemblies, though you still need to understand how these target
languages work so that you’re producing the right statements. You can also
use their compiler engines to provide a scripting or DSL framework for you in
C# or VB. To learn about how you can use Boo to create DSLs, see DSLs in Boo:
Domain-Specific Languages in .NET by Ayende Rahien (Manning, 2010). Check
out the book’s website at www.manning.com/rahien/.

You’ve now seen how other languages use metaprogramming directly in their feature
sets. But although these languages may seem appealing and interesting, using these
languages at your current place of employment may not be possible. Development
shops aren’t always willing to have their developers switch languages whenever they
see fit, so you may have to find other ways to extend C# or VB. Fortunately, there are
tools and frameworks that can add some of the features that Boo and Nemerle have.
In the next section, you’ll see what these tools are and how they work in C#.

9.2 A survey of tools
Throughout this chapter, you’ve seen a number of languages that have metaprogram-
ming embedded deeply within their structure. But it’s probably a good bet that,
although you may have heard of Boo or Nemerle before, you haven’t used them. At the
end of the day, most .NET developers code in C# or VB. It’s fun to learn about what other
languages have to offer, but it’s doubtful that you’ll switch to another .NET language.

 That’s where tools come in. They extend C# with the ability to weave aspects into
your code so you can separate out reusable pieces of code with relative ease. More-
over, you don’t need to know the details of IL to do it either. In this section, you’ll see
what Spring.NET and PostSharp can do to employ metaprogramming in C#, starting
with Spring.NET.

9.2.1 What is Spring.NET?

The first tool you’re going to look at is called Spring.NET (www.springframework.net).
Spring.NET is an interesting collection of frameworks and tools, such as Spring.Data and
Spring.Messaging, but this chapter focuses on the Spring.Aop component. This assembly

www.manning.com/rahien/
www.springframework.net
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provides you with the capability of weaving code into a
class at runtime. It does this by creating a dynamic
proxy of an interface at runtime. Figure 9.2 illustrates
what Spring is doing to add aspects to your code.

 Spring adds interceptors around method invoca-
tions so you can easily layer facets like logging and
security on top of your code. The main limitation is
that it only works with virtual methods because the
generated proxy classes can’t override nonvirtual
members. Let’s take a look at building a simple inter-
ceptor that will notify you whenever a property is used.

NOTE Spring.Aop is available in NuGet, at www.nuget.org/packages/
Spring.Aop.

9.2.2 Intercepting property usage with Spring.NET

To give you a taste for the facilities Spring.Aop has to offer, you’ll create an intercep-
tor that you can use to find out whenever a property is used on an object. It doesn’t
take much to know when properties are used in code via Spring—you need to create a
class that implements IMethodInterceptor. The following code listing shows how you
can get this to work.

public sealed class PropertyInterceptor
  : IMethodInterceptor
{
  private static bool IsPropertyMethod(MethodBase method)
  {
    return (from property in method.DeclaringType.GetProperties(
           BindingFlags.Public | BindingFlags.Instance)
           where (property.GetGetMethod() == method ||
           property.GetSetMethod() == method)
           select property).Any();
  }

  public object Invoke(IMethodInvocation invocation)
  {
    if (PropertyInterceptor.IsPropertyMethod(invocation.Method))
    {
      Console.Out.WriteLine(
        "Property {0} was invoked.",
        invocation.Method.Name);
    }

    return invocation.Proceed();
  }
}

Listing 9.4 Using IMethodInterception for property usage

Figure 9.2 Spring produces 
wrappers around the object you want 
to use. These wrappers add facilities to 
the methods that are transparent 
to the caller and the callee.

www.nuget.org/packages/Spring.Aop
www.nuget.org/packages/Spring.Aop
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The only method in IMethodInterception that you need to implement is Invoke().
You use the Method property on the invocation argument to determine whether the
method is one that’s used as a getter or setter on a property. That’s what the IsProperty-
Method() does. If it is, you print the property name to the console window. The
Proceed() method tells Spring that it should continue with any other interceptors
that may want to do something with this invocation. If this interceptor is the last one
in the chain, the underlying implementation is invoked.

 You can test this using the following simple class definitions:

public interface IClassWithData
{
  Guid GetData();
  Guid Data { get; }
}

public class ClassWithData
  : IClassWithData
{
  public ClassWithData()
    : base() { }

  public ClassWithData(Guid data)
    : base()
  {
    this.Data = data;
  }

  public Guid Data { get; private set; }
}

The following code uses the interceptor with a ProxyFactory class:

var factoryData = new ProxyFactory(new ClassWithData(Guid.NewGuid()));
factoryData.AddAdvice(new PropertyInterceptor());
var dataWithInterceptor = (IClassWithData)factoryData.GetProxy();
Console.Out.WriteLine(dataWithInterceptor.Data);

The ProxyFactory class allows you to add interceptors to the factory via AddAdvice().
Then you call GetProxy(), and that returns a dynamic object that implements the
interface you cast the return value to. Once the Data property is used, the interceptor
code is invoked, and the property value is printed to the console. You should see
something like Figure 9.3.

 Although Spring.Aop provides a decent framework for dynamic code, it carries
with it the traditional limitations that most frameworks do: you can only hook virtual
members or nonsealed classes. In the next section, you’ll use a tool that provides a
higher level of flexibility for developers to add reusable pieces of code.

Figure 9.3 Receiving notifications of property usage. 
When the Data property is retrieved, the interceptor’s 
Invoke() method is called, providing you with the 
ability to provide extra functionality to the application 
(which, in this case, is logging that action to the 
console window).
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9.2.3 What is PostSharp?

PostSharp is a product that uses metadata to hook into your code and do a number of
things, including:

■ Adding traditional aspect code, like logging and tracing for a method
■ Implementing methods and interfaces for a class

PostSharp provides an API that makes applying code at specific points in an applica-
tion straightforward, without having to understand the low-level details of .NET. It also
integrates into Visual Studio to provide you with IDE helpers so you know when a code
member may be affected by PostSharp. One main difference between PostSharp and
Spring is that PostSharp isn’t limited to virtual members because PostSharp can inline
its hooks in both virtual and nonvirtual methods. Later in this chapter you’ll crack
open an assembly that’s been modified by PostSharp to get a feel for what it’s doing to
your code, but for now, let’s write a simple aspect that informs you when an instance
of a class is created.

NOTE If you want to play with PostSharp, visit www.sharpcrafters.com. It
offers free and paid versions of its product, though you’ll quickly find that the
free version is fairly limited. In this book you’ll see us use PostSharp that
requires the paid version in only a couple of cases. We feel it’s beneficial to
see code that uses features in the paid version because you can do some cool
things with that particular version. In no way do we
expect you to buy PostSharp to run the code based
on the paid-for features—we don’t get any royalties
from the makers of PostSharp.

9.2.4 Intercepting object creation with PostSharp

The first thing you’ll do with PostSharp is write code to tell
you whenever a constructor is called and to specify the argu-
ment values. You’ll write this information to the console
window to keep things simple. Figure 9.4 provides a flow for
what this aspect does.

 The following listing shows the code that you need to
write to do this. As you can tell, PostSharp makes this easy
to accomplish.

[Serializable]
public sealed class CreationAttribute
  : OnMethodBoundaryAspect
{
  public override void OnEntry(MethodExecutionArgs args)
  {
    if (args.Method.IsConstructor)
    {

Listing 9.5 Creating a constructor weaver with PostSharp

Figure 9.4 Adding 
object creation notifications 
to your code. Whenever 
a constructor is called, 
PostSharp injects code so 
that information about the 
creation is sent to the 
console window.

www.sharpcrafters.com
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      Console.Out.WriteLine(
        "Object {0} was instantiated with the following arguments:",
        args.Method.DeclaringType.Name);

      foreach (var argument in args.Arguments)
      {
        Console.Out.WriteLine("Type: {0} || Value: {1}",
          argument.GetType().Name, argument);        
      }
    }
  }
}

As stated in the previous section, PostSharp uses attributes to define the points where
code will be modified in some way. In this case, you use the OnMethodBoundaryAspect
attribute. Note that PostSharp doesn’t follow the normal .NET naming convention
with attributes. Normally you’d expect the attribute to be named OnMethodBoundary-
AspectAttribute, but that’s not the case with PostSharp.

 The PostSharp attributes provide a number of overrides you can use to know when
a specific event has occurred in code. By overriding OnEntry(), you’re notified when a
method has been invoked. You only care about constructor invocations, so you use the
IsConstructor property on Method, which is a System.Reflection.MethodBase refer-
ence. If it’s a constructor, you post the name of the method to the console window along
with all the argument values. Note that the Arguments property is a collection of objects; it’s
not a collection of objects typed to something like an Argument class that provides informa-
tion like the name and position of the argument. You get the values of the arguments.

 Using this attribute is pretty simple:

[Creation]
public sealed class ClassWithCreation
{
  public ClassWithCreation()
    : base() { }

  public ClassWithCreation(Guid data)
    : base() 
  { 
    this.Data = data;
  }

  public Guid Data { get; private set; }
}

Now all it takes is writing some code like this to see it in action:

var noData = new ClassWithCreation();
Console.Out.WriteLine(noData.Data);
var data = new ClassWithCreation(Guid.NewGuid());
Console.Out.WriteLine(data.Data);

Figure 9.5 shows what the results are when you run that code. In the first case, the no-
argument constructor is called, but in the second case, you see the constructor’s argu-
ment values in the console window.



282 CHAPTER 9 Languages and tools
The CreationAttribute is a stripped-down version of the canonical example typically
seen whenever AOP is discussed: tracing. In this case, you only care about constructor
entry, but OnMethodBoundaryAspect provides OnExit to inform you when the method
is completed. There’s also an OnException method override that you can use if an
exception is thrown from the method. It’s easy to imagine how you can use these
methods to create an attribute that encapsulates the aspect of logging such that you
can quickly apply it to any type in your application.

 In fact, making your aspect work for any class in your code is easy. Try this: remove
the CreationAttribute from any class in your code and add this one line of code
somewhere within your project:

[assembly: Creation]

Now every class in that project will have an object initialization notification! The rea-
son is due to the way attributes work in .NET. You can specify where an attribute can be
used via the AttributeUsageAttribute. It so happens that PostSharp’s aspects don’t
limit you to a specific type with attributes like OnMethodBoundaryAspect. You can tell
PostSharp to make its usage assembly-wide, and presto: constructor notification for
every type. That’s pretty slick.

 But PostSharp’s feature set isn’t limited to intercepting method calls. In the next
section, you’ll see how you can add functionality to a class where it didn’t exist before
by defining complete method implementations.

9.2.5 Implementing Equals() and GetHashCode()

You’ve seen how you can intercept method calls with PostSharp. It’s not hard to envi-
sion how you can use that feature to capture specific method requests to provide cus-
tom implementations of methods at runtime. Say you wanted to have a standard way
to implement the Equals() method for all classes by comparing the values of all pub-
lic properties. You could create a custom aspect that watched for the invocation of the
Equals() method, invoking your reflection-based code at that particular moment. But
this isn’t ideal because you’d have to intercept every method invocation to find the
Equals() one you want. There’s a much cleaner way to do that in PostSharp via
instance-level aspects and member introduction. The following listing defines an
EqualsAttribute that provides a custom implementation of Equals() for any class

Figure 9.5 Using PostSharp to intercept object creation. You can be notified by 
PostSharp whenever an object of a marked class is created.
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(along with GetHashCode(), because you should always override both when you over-
ride one or the other).

[Serializable]
public sealed class EqualsAttribute
  : InstanceLevelAspect
{
  [IntroduceMember(IsVirtual = true,
    OverrideAction = MemberOverrideAction.OverrideOrIgnore, 
    Visibility = Visibility.Public)]
  public override bool Equals(object obj)
  {
    var areEqual = false;

    if (obj != null && this.Instance.GetType()
      .IsAssignableFrom(obj.GetType()))
    {
      var result =
        (from prop in this.Instance.GetType().GetProperties(
          BindingFlags.Instance | BindingFlags.Public)
         where prop.CanRead
         select prop.GetValue(this.Instance, null)
          .Equals(prop.GetValue(obj, null)))
        .Distinct().ToList();

      areEqual = result.Count != 1 ? false : result[0];
    }

    return areEqual;
  }

  [IntroduceMember(IsVirtual = true,
    OverrideAction = MemberOverrideAction.OverrideOrIgnore,
    Visibility = Visibility.Public)]
  public override int GetHashCode()
  {
    return
      (from prop in this.Instance.GetType().GetProperties(
        BindingFlags.Instance | BindingFlags.Public)
       where prop.CanRead
       select prop.GetValue(this.Instance, null).GetHashCode())
       .Aggregate(0, (counter, item) => counter ^= item);
  }
}

NOTE The preceding example requires the paid version of PostSharp.

The first step is to inherit from InstanceLevelAspect for your custom attribute. This
means that the attribute works at the instance level and not at the method level like
our previous CreationAttribute did. The next step is to provide an implementation
for Equals(). To do that, you override Equals() in the attribute itself and then mark
that method with the IntroduceMemberAttribute. That may seem confusing at first,

Listing 9.6 Providing implementation of Equals() and GetHashCode()
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but what you’re doing is literally introducing the marked member to the instance of the
class that has this attribute on it. Therefore, any classes with the EqualsAttribute will
have any calls to Equals() redirected to this Equals() method.

 The implementation of Equals() is fairly straightforward. You ensure that the
given object is the same type as the instance and then you iterate through all the pub-
lic property values via Reflection. The result of the LINQ statement is either one dis-
tinct Boolean value or two. If you get two back, you know the objects aren’t equal—
otherwise, you return the one Boolean value you got from the query. Note that you
must be careful not to use this if you want to reference an object member, because
this is the attribute’s this. If you do use this directly in Equals(), you’re using the
attribute instance, which isn’t what you want. 

 It’s natural to use this, but you have to remember that you’re writing code that’s
targeting another object instance. Therefore, you use the Instance property to get a
reference to the object currently in scope. Figure 9.6 illustrates how the current object
is exposed via the Instance property.

 The GetHashCode() method is handled like the Equals() method is—it’s intro-
duced into the marked object. All the hash code values are XOR’ed together with the
Aggregate() function.

 Now that you have the two methods that handle equality overridden, adding them
to a class is easy:

[Equals]
public sealed class ClassWithEquals
{
  public int IntData { get; set; }
  public string StringData { get; set; }
}

With this attribute in place, you can run the following code:

var equals1 = new ClassWithEquals { IntData = 10, StringData = "10" };
var equals2 = new ClassWithEquals { IntData = 20, StringData = "20" };
var equals3 = new ClassWithEquals { IntData = 10, StringData = "10" };

Console.Out.WriteLine(equals1.Equals(equals2));
Console.Out.WriteLine(equals1.Equals(equals3)); 

You’ll see that the first and third objects are equal and have the same hash code val-
ues. Keep in mind that this is an instance-level attribute, so you can’t apply this assembly-
wide like you could with the CreationAttribute class.

Figure 9.6 Getting a reference to the “real” 
object. In the attribute, you use the Instance 
property to reference the object that the 
aspect is on. PostSharp handles setting that 
reference for you.



285A survey of tools
You’ve now seen how PostSharp can make metaprogramming clean and simple. But
you may be wondering how PostSharp does what it’s doing. The next section takes a
brief look under the covers to find out.

9.2.6 A quick dive into the internals of PostSharp

As you can probably guess, it takes more than referencing PostSharp.dll to enable all
the fancy gyrations you saw in the last two sections. PostSharp ties into the compilation
process to create all the necessary hooks and custom implementation specified by
your custom attributes. Let’s see what PostSharp does to your code by looking at the
ClassWithCreation class created in section 9.2.4. The following listing shows the
code that exists in the constructor for ClassWithCreation that takes a Guid after Post-
Sharp does its magic.

public ClassWithCreation(Guid data)
{
  this.<>z__InitializeAspects();
  MethodExecutionArgs methodExecutionArgs = 
    new MethodExecutionArgs(null, new Arguments<Guid>
    {
      Arg0 = data
    });
  MethodExecutionArgs arg_2A_0 = methodExecutionArgs;
  MethodBase m = ClassWithCreation.<>z__Aspects.m7;
  arg_2A_0.Method = m;
  ClassWithCreation.<>z__Aspects.a4.OnEntry(methodExecutionArgs);
  this.Data = data;
} 

The preceding code was produced by the tool ILSpy (http://ilspy.net). PostSharp puts
a fair amount of code into the method to support its features—remember that the
original method only had one line of code: the property setter. PostSharp also uses
some strange variable names to minimize the chance that they will collide with any
names you’ve used, but once you get past them figuring out what’s going on is straight-
forward. PostSharp first gathers up the argument values with a MethodExecutionArgs
reference. Then it captures a MethodBase reference that refers to the currently exe-
cuting method. Finally, it passes them on to the OnEntry() method you overrode in
the CreationAttribute attribute.

 PostSharp is free to change how it performs its code modification, so you shouldn’t
necessarily rely on anything you see here being the same from version to version. Yet
given all that you know about metaprogramming in .NET, you probably weren’t sur-
prised to see how PostSharp does what it does. Although PostSharp doesn’t give you
the ability to modify the IL of a method, for most AOP techniques you don’t need such
fine-grained control. Having an API and toolset that sit at a reflection-like level is eas-
ier for a C# developer to comprehend, which makes it quicker for them to start per-
forming all sorts of useful gyrations in their code. 

Listing 9.7 Code modified by PostSharp

http://ilspy.net
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9.3 Summary
In this chapter, you investigated languages that lifted metaprogramming into the fore-
front via expressions and tools that provided interception and code weaving to make
your code succinct and reusable.

 In the final chapter, you’re going to get a glimpse into the future of .NET.
Although dynamic capabilities exist in .NET, there’s never been a unified way to man-
age your code from parsing to execution. That’s what Project Roslyn is all about, that’s
what chapter 10 is all about too.



Managing
the .NET Compiler
By now, we hope you’ve seen that metaprogramming in .NET isn’t only possible, it’s
something you should always consider using whenever you create new applications.
Metaprogramming requires more care and thought than “normal” .NET develop-
ment, but the payoff comes with succinct, reusable, dynamic pieces of code. One
recurring theme of this book is the use of frameworks to support these techniques—
frameworks that provide you with a lot of power, but don’t come with an installation of
.NET. With Project Roslyn—a framework from Microsoft that allows you to compile
your C# or VB code with a managed API—that’s going to change in a big way.

 This chapter gives you a quick tour of the history of compilers within the Micro-
soft world, how they’ve been done in the past, and what Roslyn does to change that
traditional architecture. You’ll also get an overview of key features within the
Roslyn API that will help you understand how you’ll be able to use Roslyn to sup-
port the metaprogramming techniques discussed in this book. Finally, you’ll see
how Roslyn can make program analysis easier.

 First, let’s see what Roslyn is doing to change the compiler world in .NET.

This chapter covers
■ The evolution of the compilers
■ Using the Roslyn API to generate code
287
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10.1 Opening up the compiler
Metaprogramming in .NET usually requires you to understand low-level APIs like Sys-
tem.Reflection.Emit or find frameworks like Cecil or NRefactory. There isn’t a consis-
tent, unified approach for you to support metaprogramming techniques like dynamic
code execution and code parsing. This fragmentation occurs because the compiler’s
inner workings aren’t visible to you. In this section, you’ll see how compilers have tra-
ditionally worked in .NET, why this makes metaprogramming hard to do, and how
Roslyn addresses this issue by opening up the compiler.

10.1.1 The current state of affairs: a black box

Ever since the first version of .NET, the compiler has existed as a simple executable.
You invoke it to morph your code, contained in text files, into an assembly. Figure 10.1
illustrates this simplistic process that goes on when you compile C# code.

 At first glance, a compiler may seem somewhat trivial, but the inner workings are
incredibly complex. The rules that a compiler writer must follow to change your C#
code into metadata and IL can be daunting to say the least. Imagine the last lines of
C# code you wrote on a recent big project and think of all the things the compiler has
to keep track of correctly: generic definitions, lambda expressions, and variable defi-
nitions, to name a few (and semicolons). Writing compilers can be one of the hardest
things to do correctly, and it’ll show if it has bugs. There’s probably no other execut-
able you run more in your day-to-day activities as a C# developer than csc.exe, and if it
doesn’t work as expected, you’ll know right away.

NOTE For a description of the passes the C# compiler does, see the article at
http://mng.bz/8dWX.

Even though a lot of work goes on in the background, you don’t have a lot of options
for controlling what the compiler does. In fact, you have fewer than 50 options, some
of which have nothing to do with the compilation process itself; they tell the compiler
to create extraneous files (such as /doc). When it comes to metaprogramming, this
creates challenges you have to overcome.

NOTE The complete list of command line options for the C# compiler is
available at http://mng.bz/xML9.

10.1.2 Limitations for metaprogramming

The architecture of a compiler is complex, but over the years not having access to this
process has started to show limitations in various areas of development, and not only
with metaprogramming. Think about a code analysis engine. Right now, the engine

Figure 10.1 Compiling code files with 
csc.exe. It’s a fairly easy process: you specify 
what files the compiler works with, and it 
gives you an assembly.

http://mng.bz/8dWX
http://mng.bz/xML9
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has to wait for the compiler to finish its job before it can analyze the assembly to tell
you whether you may have subtle issues with your implementation. For example:

[OperationContract(IsOneWay = true)]
public string MyOperation() { }

The C# compiler will happily compile this with no issues because it doesn’t know
about the WCF rule that one-way operations (methods marked with the Operation-
ContractAttribute) can’t return a value. Sure, you can write a unit test to exercise
your code and catch this issue before it gets farther than your machine, but wouldn’t
it be better if you knew about this when compilation was happening, and not when
the analysis engine kicked in? Or even better—how about knowing about these kinds
of errors while you were typing your code?

 A lot of services and features that you use as a .NET developer have to work around
the fact that they can’t tie in to the compilation process. Code formatting services,
code analysis engines—they need ways to determine what’s wrong with your code
without having explicit, rich knowledge of your code. Without a standardized way of
getting this information from code, developers have resorted to creating their own
libraries and tools to fill the gaps. This had led to duplication in effort in many areas
related to parsing code and creating assemblies (for example, Cecil and CCI).

 This is also a key issue when it comes to metaprogramming. There’s no way for a
.NET developer to access the compiler passes and workflows to influence and manipu-
late what the compiler does. Think about that for a moment, as it pertains to all the
techniques and ideas you’ve read about in this book. For example, when you looked at
adding code via assembly rewriting techniques in chapter 6, you needed to use a
library called NRefactory to parse C# code. If .NET provided that parse-related infor-
mation for you, you wouldn’t need to create it yourself (or use what someone else has
created). If you had the ability to add a ToString() implementation or weave in code
that checked arguments for a null value when the code was compiling, you wouldn’t
need to add in another step after compilation occurs. You could do it when compila-
tion was happening!

 Fortunately, Microsoft has been working on a new, managed compiler with a pleth-
ora of APIs behind it waiting for you to play with. This is called Project Roslyn.

10.1.3 What Roslyn provides: a white box

Project Roslyn finally opens up the compiler box to let you see all the steps and paths
the compiler takes when it takes your code and creates an assembly. Figure 10.2 illus-
trates what is now available to you with Project Roslyn.

 You now have access to parsing information, symbolic details, and so on. Although
the next version of csc.exe may not have this kind of extensibility, its internals are no
longer internals—they’re externalized with the Roslyn APIs. We cover the details of
how Roslyn works in upcoming sections. But it’s not only about seeing what the com-
piler is doing. With this kind of extensive insight into your code, you can reason about
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it to give immediate feedback to a developer to fix potential issues, or provide code
generation facilities, or generate code at runtime—the possibilities are enormous.
Roslyn brings a lot to the table for those interested in metaprogramming techniques,
but it also provides a unified view for code analysis adventures.

 You’ll see examples in this chapter on how you can use Roslyn to execute and
examine code to support metaprogramming. Before we dive into the Roslyn APIs, let’s
spend time covering what’s not in Roslyn. This will help level-set any expectations you
may have about what you’re hoping it can do.

10.1.4 What’s in (and not in) the CTP
Roslyn is a major step forward for developers who want that intimate view of code, but
it does have limitations. Let’s cover some of them before you see what Roslyn can do.

 First, Roslyn only works with C# and VB. If you like F#, you’re out of luck when it
comes to analyzing your code with the Roslyn APIs. The same goes for any other lan-
guage that targets the .NET world. That’s not to say that Roslyn won’t change in a
future version to let others create providers and extensions to Roslyn for other lan-
guages, but Microsoft has to ship the first version.

 Second, Roslyn isn’t about extending the C# and VB languages. As you play with
the Roslyn APIs, you may start having ideas like this:

public disposed class DisposableItem
{
  public void DoSomething()
  {
    // Important code goes here...
  }

  public string Data { get; set; }
}

Notice the addition of the new keyword, disposed, in that code snippet. Having the
compiler generate all the code you need to implement IDisposable, including the rules
around ObjectDisposedException, all based on the existence of a custom token—
that would be nice! Or what about doing something like this?

var x = 23.2;
var y = 4.2;
var z = x ^^ y;

Instead of having to type Math.Pow, you could use something like a double-caret (^^),
and let your custom parsing implementation translate that token into a Math.Pow call.

Figure 10.2 Seeing the internals of the 
compiler. Having access to this level of detail 
opens up a whole new set of dynamic 
possibilities to the .NET developer.
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You think, hey, I have access to the compiler engine—why don’t I add my own key-
words and operations and pick them up when the code is parsed?

 That would be problematic, mainly because you’ve extended the language in a way
that would require anyone else that wants to compile your code to have your specific
extensions in place to handle that syntax. Plus, even if you were able to make it
extremely simple to provide these extensions to any developer who compiles your
code, what about the hordes of developers who are creating their own extensions to
the language? Or, even worse, what if someone uses a double-caret to mean something
entirely different from something you meant?

 That’s not to say you can’t use metadata to extend C# like this:

[Disposable]
public sealed class DisposableItem
  : IDisposable
{
  public void Dispose()
  {
    // Dispose code goes here...
  }

  public void DoSomething()
  {
    // Important code goes here...
  }

  public string Data { get; set; }
}

Then you can use the existence of that metadata to generate code with Roslyn.
There’s nothing wrong with that. But Roslyn isn’t about letting you extend C# or VB.

NOTE For a full description of Roslyn’s limitations, check out http://
mng.bz/PXRO.

With the limitations out of the way, let’s see what Roslyn can do. We’ll start creating
pieces of executable code by compiling code as text and work our way deeper into
more of its parts. The first example will mirror an example you’ve seen before in this
book, but it won’t involve understanding IL or expressions trees. All you’ll need is
your knowledge of C#, which, as you’ll see, allows you to focus on the skills you
already have.

10.2 Understanding the basics of Roslyn
Let’s start your journey of looking at how Roslyn works by creating executable code
fragments at runtime. You’ll do it in two ways: you’ll use a scripting engine first, and
then you’ll see how it’s done by compiling and executing the code.

10.2.1 Running code snippets with the script engine

One of the prevalent examples used in this book was to create dynamic code to imple-
ment ToString(). The output is a double-pipe delimited set of property name and

http://mng.bz/PXRO
http://mng.bz/PXRO
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value pairs, which is what you see in figure 10.4. Let’s do the same thing with Roslyn.
We won’t concern ourselves with caching or other performance improvements or
tweaks for now. This is a CTP, and trying to gain any insight into performance num-
bers you gather is suspect at best.

 Let’s start by defining the extension method that will be used:

public static class ToStringViaRoslynExtensions
{
  public sealed class Host<T>
  {
    public Host(T target)
    {
      this.Target = target;
    }

    public T Target { get; private set; }
  }

  public static string Generate<T>(this T @this)
  {

You’ll see the definition for Generate() momentarily, but notice there’s also a class
called Host that has a read-only property of the same type as @this. That’s needed for
your scripting environment so it can reference the object you’ve been given in @this.

 Let’s see the code that’s generated to create a meaningful object description
from ToString():

    var code = "new StringBuilder()" +
      string.Join(".Append(\" || \")",
        from property in @this.GetType().GetProperties(
          BindingFlags.Instance | BindingFlags.Public)
        where property.CanRead
        select string.Format(
        ".Append(\"{0}: \").Append(Target.{0})",
          property.Name)) + ".ToString()";

This reflection code is similar to what you’ve seen in the other examples that handle
ToString() on the fly. The difference is that you’re creating C# code as the output
and not something like IL in a dynamic method. What ends up in the code variable
looks something like this:

new StringBuilder().Append("Age: ").Append(Target.Age).Append(" || ")
  .Append("Name: ").Append(Target.Name).ToString()

Installing Roslyn
To play with Roslyn, visit the Roslyn site (http://msdn.microsoft.com/en-us/roslyn) and
download the bits from there. The material in this chapter was based on the June 2012
CTP. Because this is a CTP, you may not want to run this on your main installation of VS
2010 or 2012; a safer bet is to create a virtual PC and work with Roslyn there. It’s
slower, but you won’t have to deal with any uninstallation issues that a CTP may have.

http://msdn.microsoft.com/en-us/roslyn
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The last piece is bringing Roslyn’s scripting engine into play to execute the code:

    var hostReference =                                  
      new AssemblyFileReference(typeof(                  
        ToStringViaRoslynExtensions).Assembly.Location); 
    var engine = new ScriptEngine(                            
      references: new[] { hostReference },                    
      importedNamespaces: new[] { "System", "System.Text" }); 
    var host = new Host<T>(@this);                           
    var session = Session.Create(host);                      
    return engine.Execute<string>(code, session); 
  }
}

First you need to get an AssemblyFileReference to
the assembly that contains the Host type so the
scripting engine will know what Target means in the
code you give it B. Next, create a ScriptEngine
object, passing it the assembly references it needs to
know about, as well as any namespaces. You’re using
StringBuilder, so that’s why System.Text is passed
into the engine c. A Session object is also
required because you need to pass in a host object
that the code can use—namely, an instance of Host—
and Session is what ties the dynamic code to your
code that’s currently executing d. The last step is to
execute the code, done by calling Execute() e. Fig-
ure 10.3 lays out the flow and interaction between
these parts so you can see at a higher level how they work together to run your
dynamic code. 

 To test it, create a simple class with a couple of properties and ToString() overrid-
den to call the extension method:

public sealed class Person
{
  public Person(string name, uint age)
  {
    this.Name = name;
    this.Age = age;
  }

  public override string ToString()
  {
    return this.Generate();
  }

  public uint Age { get; private set; }
  public string Name { get; private set; }
}

Get assembly 
reference to host

 b

Create 
scripting 
engine

 c

Create session d

Execute code e

Figure 10.3 Interaction with the 
ScriptEngine. Your code 
passes a reference to the 
assembly that contains the Host 
class, along with the target 
object, to the ScriptEngine. 
The script that’s executed will 
use both parts to run correctly.
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When you run ToString() in a console application like this

static void Main(string[] args)
{
  Console.Out.WriteLine(
    new Person("Joe Smith", 30).ToString());
}

you should see the output in Figure 10.4.
 The end result may look simple, but think about what you did. You created code

on the fly, but it wasn’t IL, or an expression tree. It was C# code! The Roslyn engine
happily compiled that little piece of code and executed it on the fly. No knowledge of
opcodes or expressions is necessary—you can write code that literally writes more
code and executes it.

 One could argue that this can be mimicked with what’s currently available in the
C# compiler. Create the code snippet in a file, run the compiler, load the resulting
assembly, and execute a method via reflection. With Roslyn, though, it’s all in-memory,
and you don’t have to mess with things like assembly loading and file creation if you
don’t want to. To be fair, Roslyn can compile code files and generate assemblies—it
has to if it’s going to replace csc.exe. But the point is, Roslyn brings code analysis and
manipulation to a much higher level than was ever available before.

 Now that you have your feet wet with Roslyn, let’s take a deeper dive into its API
and see how to create a simplistic dynamic mock at runtime.

10.2.2 Creating dynamic assemblies with Roslyn
In the preceding section, you saw how to use the scripting engine to run C#. Now
you’ll see how you can compile a mock C# into an assembly. Before you look deeper
into the Roslyn API again, let’s define what a mock is.

10.2.3 What is a mock?
Generally speaking, a mock is an object that can stand in place of another object. The
mock is typically used in unit-testing scenarios, where a developer uses a mock instead
of an object that does a number of long-running or complex calculations. Rather than
include these dependencies in the unit test, the developer will inject a mock into the
test such that the test can focus on the code at hand. You can also use a mock object to
verify that the code under test used it in an expected manner.

 Let’s use a simple example to illustrate how mocks are used. Let’s say you had a
class called Person that used a service to look up address information for that person.
Figure 10.5 shows the dependency Person has on the service.

Figure 10.4 Calling ToString() implemented via 
Roslyn. By compiling C# at runtime, you can 
implement anything you want at the abstraction 
level where you always write.
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Now, whenever a developer needs to test a
Person object, she needs to also ensure that
the service is up and running and will return
the expected data. This is time-consuming
and brittle. A better approach would be to
break the direct dependency on Address-
Service, as figure 10.6 shows.

 In this case, Person now has a dependency
on the IAddressService interface. The code
doesn’t care how the class that implements
IAddressService works; it cares about the
contract that the interface specifies. During a test, a MockAddressService object is
used, and in production, AddressService is used.

TIP If want to learn more about unit testing, please check out The Art of Unit
Testing by Roy Osherove (Manning, 2009) (http://manning.com/osherove/)
and Dependency Injection in .NET by Mark Seemann (Manning, 2011) (http://
manning.com/seemann/).

You can hand-roll the mocks if you want; you can write the code that implements an
interface and notifies you when a method has been called. You can also use metapro-
gramming techniques to synthesize a class at runtime that does this for you. Let’s see
how you can use Roslyn to create a mock at runtime.

10.2.4 Generating the mock code

In this section, you’ll see how you can create a mock using C#-generated code at runtime.
You’ll compile the code and create an instance of the mock, passing that back to the
caller. The caller will use a class with methods that match the signature of the methods in
the interface you want to handle in the test. This arrangement will allow you to provide a
mocked implementation of the interface method, which is useful in testing scenarios.

Mock frameworks in .NET
The mock structure you’re going to create is fairly simplistic compared to some of the
frameworks that currently exist in the .NET world. 

Some of the ones we recommend are NSubstitute (http://nsubstitute.github.com), Moq
(http://code.google.com/p/moq/), and RhinoMocks (http://hibernatingrhinos.com/
open-source/rhino-mocks). 

Hopefully, once Roslyn is officially released, these frameworks will spend time updat-
ing their engines to use the Roslyn API to generate their mocks.

Figure 10.5 Using a dependency directly. Using an object that has 
complex setup needs or takes a long time to execute can make unit 
testing difficult and time-consuming.

Figure 10.6 Using an interface in code. Now 
the Person object doesn’t care how 
IAddressService is implemented, and you 
can use mocks for Person-based unit tests.

http://manning.com/osherove/
http://manning.com/seemann/
http://manning.com/seemann/
http://nsubstitute.github.com
http://code.google.com/p/moq/
http://hibernatingrhinos.com/open-source/rhino-mocks
http://hibernatingrhinos.com/open-source/rhino-mocks
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The first thing you want to do is create a string that represents the structure of the
class you want to dynamically create at runtime:

public sealed class MockCodeGenerator
{
  private const string Template = @"
    [System.Serializable]
    internal sealed class {0}
      : {1}
    {{ 
      private {2} callback;
      
      public {0}({2} callback)
      {{
        this.callback = callback;
      }}

      {3} 
    }}";

Each mock needs a new type name ({0}), the interface it’s implementing ({1}), a ref-
erence to the callback object ({2}), and a list of interface methods with an implemen-
tation based on the methods that exist in the callback object ({3}). Let’s fill these
holes in the code:

  public MockCodeGenerator(string mockName,
    Type interfaceType, Type callbackType)
    : base()
  {
    this.MockName = mockName;
    this.InterfaceType = interfaceType;
    this.InterfaceTypeName = InterfaceType.FullName;
    this.CallbackType = callbackType;
    this.Generate();
  }

  private void Generate()
  {
    this.Code = string.Format(MockCodeGenerator.Template,
      this.MockName, this.InterfaceTypeName,
      this.CallbackType.FullName,
      this.GetMethods());
  }

Other than generating the methods, everything else is fairly boilerplate. Note that we
use the FullName property for both the interface and callback types. This makes it a lit-
tle easier to generate the code because you don’t need to include using statements. The
following listing illustrates how you generate the methods that implement the interface.

  private string GetMethods()
  {
    var methods = new StringBuilder();

Listing 10.1 Generating methods for an interface
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    var callbackMethods = this.CallbackType.GetMethods(
      BindingFlags.Public | BindingFlags.Instance);

    foreach (var interfaceMethod in                          
      this.InterfaceType.GetMethods())                       
    {                                                        
      methods.Append("public " +                             
        MockCodeGenerator.GetMethod(interfaceMethod) + "{"); 

      var callbackMethod = this.FindMethod(                  
        callbackMethods, interfaceMethod);                    

      if (callbackMethod != null)                             
      {                                                       
        if (callbackMethod.ReturnType != typeof(void))        
        {                                                     
          methods.Append("return ");                          
        }                                                     

        methods.Append("this.callback." +                     
          MockCodeGenerator.GetMethod(                        
            callbackMethod, false) + ";");                    
      }                                                       
      else                                                   
      {                                                      
        if (interfaceMethod.ReturnType != typeof(void))      
        {                                                    
          methods.Append("return " + (                       
            interfaceMethod.ReturnType.IsClass ?             
            "null;" : string.Format("default({0});",         
              interfaceMethod.ReturnType.FullName)));        
        }                                                    
      }                                                      

      methods.Append("}");
    }

    return methods.ToString();
  }

You need to generate a method for each method on the interface B. The key aspect
to notice is the way the implementation is done. You look to see if the callback object
has a method that matches the signature of the interface method. If so, call the method
on the callback object c. Otherwise, you return the default value of the interface
method’s return type if it’s not void d.

 You call FindMethod() to find a match on the callback object, as shown in the fol-
lowing listing.

   private MethodInfo FindMethod(
    MethodInfo[] callbackMethods, MethodInfo interfaceMethod)
  {
    MethodInfo result = null;

    foreach (var callbackMethod in callbackMethods)
    {

Listing 10.2 Finding a method match on the callback object

Create 
implementation 
for each method

 b

Call method on 
callback object 
if match exists

 c

Return default 
value for interface 
method if return 
type isn’t void

 d
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      if (callbackMethod.ReturnType ==           
        interfaceMethod.ReturnType)              
      {
        var callbackParameters =                        
          callbackMethod.GetParameters();               
        var interfaceParameters =                       
          interfaceMethod.GetParameters();              

        if (callbackParameters.Length ==                
          interfaceParameters.Length)                   
        {                                               
          var foundDifference = false;                  

          for (var i = 0;                               
            i < interfaceParameters.Length; i++)        
          {                                             
            if (callbackParameters[0].ParameterType !=  
              interfaceParameters[0].ParameterType)     
            {                                           
              foundDifference = true;                   
              break;                                    
            }                                           
          }                                             

          if (!foundDifference)                    
          {
            result = callbackMethod;            
            break;                              
          }                                     
        }
      }
    }

    return result;
  }

You iterate through each method on the callback object. First, you check the return
types to see if they match B. If they do, then you look at each parameter’s type to see
if they match c. If there are no differences in the parameter types, you’ve found a
match, and that’s what you return d.

 The GetMethod() method returns a stringified version of a MethodInfo that can be
used in C# code generation, as shown in the following listing.

  private static string GetMethod(
    MethodInfo method, bool includeTypes = true)
  {
    var result = new StringBuilder();

    if (includeTypes)
    {
      result.Append(method.ReturnType == typeof(void) ? "void " :
        method.ReturnType.FullName + " ");
    }

Listing 10.3 Generating C# for a method definition

Make sure return 
types are the same

 b

Ensure all 
parameter 
types match

 c

Return current method 
if all types match

 d
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    result.Append(method.Name + "(");
    result.Append(string.Join(", ",
      from parameter in method.GetParameters()
      select (includeTypes ?
        parameter.ParameterType.FullName + " " + parameter.Name :
        parameter.Name)));
    result.Append(")");
    return result.ToString();
  }

  private Type CallbackType { get; set; }
  public string Code { get; private set; }
  private Type InterfaceType { get; set; }
  private string MockName { get; set; }
  private string InterfaceTypeName { get; set; }
}

Again, note that you’re using full type names for the return type (if it’s not void) and
the parameter types.

 Let’s go through a quick example to see what the generated code looks like. Con-
sider the following interface:

public interface ITest
{
  void CallMe(string data);
  int CallMe();
}

And let’s say you defined a callback object like this:

public sealed class TestCallback
{
  public int Callback()
  {
    return new Random().Next();
  }
}

Note that the Callback() method matches the signature of CallMe() in ITest, but
TestCallback doesn’t implement ITest. A generated mock for ITest that uses Test-
Callback would look something like this:

[System.Serializable]
internal sealed class TestCallbackMock
  : DynamicMocks.Roslyn.Tests.ITest
{
  private DynamicMocks.Roslyn.Tests.TestCallback callback;

  public TestCallbackMock(
    DynamicMocks.Roslyn.Tests.TestCallback callback)
    {
      this.callback = callback;
    }

    public void CallMe(System.String data){}

    public System.Int32 CallMe()
    {
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      return this.callback.Callback();
    }
}

The mock defines two methods to implement the ITest method, but the CallMe()
method that takes a string doesn’t do anything. The CallMe() methods calls Callback
on the TestCallback object as the signature matches. 

 Now you have the ability to generate a mock in C#. In the next section, you’ll see
how you can compile this with Roslyn.

10.2.5 Compiling the mock code

You have the ability to create a C#-based mock. The following listing shows how you
can compile that code with Roslyn.

public static class Mock
{
  private static readonly Lazy<ModuleBuilder> builder =
    new Lazy<ModuleBuilder>(() => Mock.CreateBuilder());

  public static T Create<T>(object callback)
    where T : class
  {
    var interfaceType = typeof(T);        

    if (!interfaceType.IsInterface)       
    {                                     
      throw new NotSupportedException();  
    }                                     

    var callbackType = callback.GetType();          
    var mockName = callbackType.Name +              
      Guid.NewGuid().ToString("N");                 

    var template = new MockCodeGenerator(mockName,  
      interfaceType, callbackType).Code;            
    var compilation = Compilation.Create("Mock",               
      options: new CompilationOptions(                         
        OutputKind.DynamicallyLinkedLibrary),                  
      syntaxTrees: new[]                                       
      {                                                        
        SyntaxTree.ParseCompilationUnit(template)              
      },                                                       
      references: new MetadataReference[]                      
      {                                                        
        new AssemblyFileReference(                             
          typeof(Guid).Assembly.Location),                     
        new AssemblyFileReference(                             
          interfaceType.Assembly.Location),                    
        new AssemblyFileReference(                             
          callbackType.Assembly.Location)                      
      });                                                      

Listing 10.4 Compiling code at runtime with Roslyn

Ensure generic 
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    var result = compilation.Emit(Mock.builder.Value);         

    if (!result.Success)                                       
    {                                                          
      throw new NotSupportedException(                         
        string.Join(Environment.NewLine,                       
          from diagnostic in result.Diagnostics                
          select diagnostic.Info.GetMessage()));               
    }                                                          

    return Activator.CreateInstance(                        
      Mock.builder.Value.GetType(mockName), callback) as T; 
  }

  private static ModuleBuilder CreateBuilder()                     
  {                                                                
    var name = new AssemblyName                                    
    {                                                              
      Name = Guid.NewGuid().ToString("N")                          
    };                                                             

    var builder = AppDomain.CurrentDomain.DefineDynamicAssembly(   
      name, AssemblyBuilderAccess.Run);                            
    return builder.DefineDynamicModule(name.Name);                 
  }                                                                
}

The first thing to do is check that T is an interface B. Once you’ve verified that, you
use the MockCodeGenerator class to create the mock code c. You pass that generated
code to the Create() method of the Compilation class via a syntax tree. This syntax
tree is created by SyntaxTree.ParseCompilationUnit() (we cover trees in the next
section). You also pass AssemblyFileReference objects so the compiler knows where
the types are that are referenced in the mock code d. Once Create() is done, you
can emit the results into a dynamic module. If Emit() wasn’t successful, you can exam-
ine the Diagnostic property to find out what isn’t correct in your code e. Finally, a
new instance of the mock is created with a reference to the callback object f. Note
that the dynamic assembly is lazily created g.

 With all this in place, you can now create a mock using the ITest and TestCall-
back classes like this:

var callback = new TestCallback();
var mock = Mock.Create<ITest>(callback);
var result = mock.CallMe();

When this code executes, result will contain a random integer value. 
 With Roslyn, you can easily create dynamic code that does complex activities. Rather

than resort to System.Reflection.Emit and IL, you can write your C# and compile that
instead. The barrier to entry to perform powerful metaprogramming-based implementa-
tions is much lower with Rolsyn than with other approaches you’ve seen in this book.

 The last thing you need to look at are the trees that Roslyn produces. This will
become important when you start writing code that interacts with code written in
Visual Studio.

Emit mock code 
into dynamic 
assembly, check 
for success

 e

Return new 
instance of mock

 f

Create new 
dynamic 
assembly

 g
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10.2.6 Understanding trees

In the last example, you used SyntaxTree.ParseCompilationUnit() to create a tree
structure that represents the code you pass into the method. As you can imagine,
these trees are rich and complex—in fact, when you install Roslyn, you get a couple of
visualizers to help you easily see the tree. Figure 10.7 is the debug visualizer that’s a
representation of the mock code as a tree.

TIP To learn more about using the Roslyn visualizers, visit http://mng
.bz/59EU.

The syntax tree is a complete representation of the code you parsed, including
whitespace (known as trivia). This is necessary because if you want to retain code for-
matting as you change it, you need to know what kind of whitespace exists in the docu-
ment (and how much of it).

 Trees in Roslyn are immutable. You can’t change the contents of a tree. Immutable
structures have many advantages—for example, they can make concurrent program-
ming much easier to reason about—but, because they’re immutable, you can’t change
them. Thankfully, Roslyn ships with a couple of visitor classes: you can use Syntax-
Walker and SyntaxWriter to search the contents of a tree and create a new tree based
on a given tree. You’ll use trees and visitors a lot more in the next section, when you
interact with code written in Visual Studio.

Figure 10.7 The Roslyn syntax debugging visualizer. If you look at certain objects in the SyntaxTree 
view, you can look at the tree (and its corresponding code) in the visualizer.

http://mng.bz/59EU
http://mng.bz/59EU
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NOTE This is the same technique that you used to change an expression tree
in chapter 6. 

10.3 Interacting with code in Visual Studio
You’ve now seen how to generate code on the fly with Roslyn. This can have a tremen-
dous, positive impact on you as a developer who wants to incorporate metaprogram-
ming techniques in your code because you can generate code in C#, compile it, and
execute it. You’re using knowledge you already have, rather than having to under-
stand the details of IL. But you can do a lot more with Roslyn than compile code. You
can use it to analyze code while code is being written and provide alternatives and
fixes. You can also generate code for a developer to make it easier to implement pat-
terns and idioms. Let’s take a look at what it would take to fix a WCF issue, and then
you’ll see how you can generate code in the editor.

10.3.1 Creating a IsOneWay warning

In section 10.1.2 you saw a code snippet where the code violated a WCF rule but the
C# compiler considered the code valid. Let’s use Roslyn to create a couple of classes
that will integrate into the Visual Studio editor to provide a developer with a custom
error and a couple workarounds.

10.3.2 Defining the Code Issue

The first thing you need to do is create a Code Issue project. That’s pretty simple, as
figure 10.8 shows.

 Once you have your project set up, you need to create a Code Issue. This is a class
that implements the ICodeIssue interface with a couple of MEF attributes, as shown in
the following listing.

Figure 10.8 Creating a Code Issue project. Project Roslyn provides a number of project 
templates to make it easy to create specific kinds of Roslyn-based solutions.



304 CHAPTER 10 Managing the .NET Compiler
namespace Wcf.Issues
{
  [ExportSyntaxNodeCodeIssueProvider(            
    "Wcf.Issues.OneWayOperationIssueProvider",   
    LanguageNames.CSharp,                         
    typeof(MethodDeclarationSyntax))]          
  public sealed class OneWayOperationCodeIssueProvider
    : ICodeIssueProvider
  {

You state that your class is a code issue provider with ExportSyntaxNodeCode-
IssueProvider. The type of the node stated (MethodDeclarationSyntax) means you’re
looking for method declarations that have been made or changed in the editor B.
Note that this code is for C#. You could easily create a provider for VB, but you’d have
to use the VB version of Roslyn to do it c.

 The ICodeIssueProvider defines three GetIssues() methods. You’re concerned
only with the one that takes a CommonSyntaxNode as its second parameter; the other
methods you can implement by throwing NotImplementedException. To implement
this method, you need to check for a few things with the method you’ve been given:

■ It must have the OperationContractAttribute defined.
■ IsOneWay must be set to true.
■ The return type of the method must be something other than System.Void.

The following listing suggests how you’d handle the first two requirements.

      var methodNode = (MethodDeclarationSyntax)node;

      if (methodNode.Attributes != null)
      {
        var model = document.GetSemanticModel();
        var operationContractType = 
          typeof(OperationContractAttribute);
        var operationSyntax = (
          from attribute in methodNode.Attributes
          from syntax in attribute.Attributes
          let attributeType = model.GetTypeInfo(syntax).Type
          where 
            attributeType != null &&
            attributeType.Name == 
              operationContractType.Name &&
            attributeType.ContainingAssembly.Name == 
              operationContractType.Assembly.GetName().Name
          from argument in syntax.ArgumentList.Arguments
          where (
            argument.NameEquals.Identifier.GetText() ==
              "IsOneWay" &&
            argument.Expression.Kind ==
              SyntaxKind.TrueLiteralExpression)
          select new { syntax, argument }).FirstOrDefault();

Listing 10.5 Creating a Code Issue project

Listing 10.6 Searching for WCF metadata on a method

Create MEF export to 
define item issue will use

 b

Define supporting 
language c
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If the method has any attributes, you get type info from the semantic model for that
attribute and compare its name and containing assembly name to OperationContract-
Attribute’s values. Look through the argument list of the attribute, and if one of the
identifiers is IsOneWay, and its expression type is a SyntaxKind.TrueLiteralExpression,
you know you should definitely check the return type of the method.

 The third requirement is to check the return type of the method, as shown in the
following listing.

        if (operationSyntax != null)
        {
          var returnType = model.GetSemanticInfo(
            methodNode.ReturnType).Type;

          if (returnType != null &&
            returnType.SpecialType != SpecialType.System_Void)
          {
            return new[] 
            {
              new CodeIssue(CodeIssue.Severity.Error, 
                methodNode.ReturnType.Span,
                "One-way WCF operations must return System.Void.",
                new ICodeAction[] 
                { 
                  new OneWayOperationReturnVoidCodeAction(
                    editFactory, document, 
                    methodNode.ReturnType),
                  new OneWayOperationMakeIsOneWayFalseCodeAction(
                    editFactory, document, 
                    operationSyntax.argument)
                })
            };
          }
        }
      }

      return null;
    }

Once you have semantic information about the method’s return type, you can check
SpecialType to see if it equals SpecialType.System_Void. If so, you need to tell the
developer that the code has an error, and that’s what you do when you return a Code-
Issue object. In this case, it’s definitely an error, which is why Severity.Error is used.
You want the user to focus on the return type portion of the method declaration,
which is why you pass the Span property value of the ReturnType property. This will
put the red squiggle error line under the return type in the code editor—you’ll see a
screen shot of that in a moment.

 The other thing you’ll notice is that you’re passing in two objects via an ICode-
Action array to the CodeIssue object. This provides developers with ways to address
the issue they’re seeing. In the next section, you’ll see what these actions are doing.

Listing 10.7 Checking the return type of a method
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10.3.3 Defining the OneWayOperation code actions

It’s one thing to tell developers what they’re doing is wrong. But if you can provide
them with ways to fix the issue, that’s a big win. There are at least two ways you can fix
this WCF issue:

■ Change the value of IsOneWay to false.
■ Change the return type to be System.Void.

Let’s look at how you can fix the problem with the first approach. The first thing you
need to do is create a class that implements ICodeAction. You don’t need to put any
MEF attributes on your implementation this time. You need to create a constructor
that will capture a couple of objects from the code issue and help in creating a fix for
the issue:

public sealed class OneWayOperationMakeIsOneWayFalseCodeAction
  : ICodeAction
{
  private IDocument document;
  private AttributeArgumentSyntax attributeArgumentSyntax;

  public OneWayOperationMakeIsOneWayFalseCodeAction(
    IDocument document,
    AttributeArgumentSyntax attributeArgumentSyntax)
  {
    this.document = document;
    this.attributeArgumentSyntax = attributeArgumentSyntax;
  }

There are three members in ICodeAction that you have to implement. The two prop-
erties, Description and Icon, are easy to handle:

  public string Description
  {
    get { return "Make IsOneWay = false"; }
  }

  public ImageSource Icon
  {
    get { return null; }
  }

The main member, GetEdit(), is the method where you’ll create your resolution, as
shown in the following listing.

  public CodeActionEdit GetEdit(
    CancellationToken cancellationToken)
  {
    var trueToken =
      this.attributeArgumentSyntax.Expression.GetFirstToken();

    var falseToken = Syntax.Token(trueToken.LeadingTrivia,
      SyntaxKind.FalseKeyword, trueToken.TrailingTrivia);

Listing 10.8 Making IsOneWay false
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    var tree = (SyntaxTree)this.document.GetSyntaxTree();
    var newRoot = tree.GetRoot().ReplaceToken(trueToken, falseToken);
    return new CodeActionEdit(document.UpdateSyntaxRoot(newRoot));
  }}

It’s pretty straightforward. You need to get a reference to the first token in the
Expression portion of the attribute, because that’s what you’ll replace in code (the
false token). Next, create a new token via Syntax.Token() that uses Syntax-
Kind.FalseKeyword to define the token. You want to preserve any leading or trailing
trivia (for example, whitespace) so that your new token will easily fit in where the old
token was. Then you get a reference to the syntax tree via GetSyntaxTree() on your
document object. That’s used to replace the old token (true) with the new one
(false) via ReplaceToken(). The last step is to return a CodeActionEdit object,
which defines what the new code would look like—you’ll see an example of this in
action in the next section.

 Note the power of immutable tree design that’s prevalent in Roslyn. You create a
new tree based on the one that represents what’s in the code editor, but Replace-
Token() doesn’t change the original tree. If the user decides to not use your code
action, nothing in their current code file changes.

 The other action changes the return type of the method to System.Void. The
following listing shows what the GetEdit() implementation looks like with this
code action.

public CodeActionEdit GetEdit(
  CancellationToken cancellationToken)
{
  var returnToken = this.typeSyntax.GetFirstToken();

  var voidToken = Syntax.Token(returnToken.LeadingTrivia,
    SyntaxKind.VoidKeyword, returnToken.TrailingTrivia);

  var tree = (SyntaxTree)this.document.GetSyntaxTree();
  var newRoot = tree.GetRoot().ReplaceToken(
    returnToken, voidToken);
  return new CodeActionEdit(document.UpdateSyntaxRoot(newRoot));
}

Listing 10.9 is virtually the same as listing 10.8. The main difference is you’re making a
new token that uses the VoidKeyword value on SyntaxKind to change the return type
to void.

 With all the code in place, let’s see what the experience is like in Visual Studio.

10.3.4 Viewing the results

Launch your Code Issue project under the debugger. This launches a new instance of
Visual Studio with Roslyn integration enabled. It also includes your Code Issue in the
process so you can debug your code in action. Next, create a project that references

Listing 10.9 Implementing GetEdit() to change the return type to System.Void
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System.ServiceModel so you can use OperationContractAttribute. Finally, add the
following text to your class:

[OperationContractAttribute(IsOneWay = false)]
public string MyOperation() { return null; }

You’ll notice that no errors show up in the
Error List window. Now, change IsOneWay to
true, and you should see a new error in the
Error List window, as shown in figure 10.9.

 Remember when you passed in the Span
value of the ReturnType property? That was
so Visual Studio would add a squiggle in
code, which also provides a place for the
developer to fix the error. Figure 10.10 shows
what the actions look like in Visual Studio.

 Note the little code window to the right of the code action description. You get a
preview of what the code would look like if the developer decides to invoke the action.

 This kind of power and Visual Studio integration is enabled by the Roslyn parsing
engines. You’re probably already thinking of other ways to enhance your development
experience by fixing issues as you code. But you can also use Roslyn to suggest refac-
torings so your code is easier to read and maintain. Let’s see how you can create a
code refactoring such that code will automatically follow a particular coding standard.

Ramifications of changing the return type
When you want to fix a problem, the fix can often introduce other issues. This is the
case when you change the return type to System.Void. The new problem is that the
method may have multiple return statements, so now you’ve introduced a number of
errors that the developer has to fix.

There are a couple of things you can do. You can change the return type and let the
developer handle any return statements in code. Or you can change the code action
to parse the method body and remove all return statements as well. This may be too
invasive of an action because a return statement may contain side effects (like call-
ing a function that changes state). Writing code issues and actions requires a fair
amount of analysis to ensure you’re providing a true positive with the issue and an
effective fix with the action.

Figure 10.9 Integrating custom errors in 
Visual Studio. You don’t have to wait until a 
postcompile step to statically analyze your 
code with Roslyn; you can do it as a developer 
is writing code.

Figure 10.10 Selecting code actions for code issues in Visual Studio. The preview window 
is a nice touch to see what the change will look like.
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10.3.5 Autoarrange code

On most software development projects, it’s common to have a coding standards docu-
ment that defines the conventions and idioms that all developers should follow. Hav-
ing a consistent approach in a project is a good idea, not only with the implementation
techniques used, but also in the formatting styles for the code. But let’s be honest—
keeping track of whether or not the opening curly brace goes after the method defini-
tion or on the next line is tedious. Sure, you want everyone to use the same style, but
you want rules like this to be handled by something else, like the computer. Easy cod-
ing styles are easy to forget to do right. With Roslyn, it doesn’t take much to put
together some sophisticated rules.

 Let’s use an example where a coding standard is in place where the members of a
class are grouped together like this:

■ Events
■ Fields
■ Constructors
■ Methods
■ Properties
■ Enums
■ Nested classes or structs

Let’s go through what it’s supposed to do first, and then you’ll see how it’s done in C#.

10.3.6 Specifying the algorithm to reformat the code
Consider the following code snippet:

public class MyClass
{
  public string Data { get; private set; }

  public void AMethod() { }

  public struct NestedStruct { }

  private int aField;
}

This doesn’t fit the format specified in the previous section. How can you transform it
so it does?

 First, read the contents of the class and find all the members. You don’t need to
move anything around yet—you’re only capturing references to those members in an
object like a list. You’ll also need to handle nested classes and structures with their
own capturing object, because their members need to be processed within the scope
of that class.

 Once you know how many members you have, you put them in the order that you
want to see them in the class or structure definition. Then, you reread the definition
of the type and whenever you run into a member that could be rearranged, you
replace it with the next member in your list.
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 For example, with MyClass, you’ll find four members: a property (Data), a method
(AMethod), a nested type (NestedStruct), and a field (aField). When you reread the
class contents, you’ll put the members in the desired order: aField, AMethod, Data,
and NestedStruct. Then, you look for members that could be replaced. The first
one you find is Data. You replace that with aField. The next member is AMethod,
which you replace with itself: AMethod. You finish out the last two members, which
leaves you with a reordered definition of MyClass:

public class MyClass
{
  private int aField;

  public void AMethod() { }

  public string Data { get; private set; }

  public struct NestedClass { }
}

As you’ll see in the following sections, Roslyn makes implementing this pretty painless.

10.3.7 Defining the core parts of the refactoring project

The first thing you do is create a Code Refactoring project from the Roslyn Visual Stu-
dio template. Once you have your project defined, you need to create a class that
implements an interface from the Roslyn API and use a MEF export attribute, similar
to what you did with the Code Issue provider. The following code snippet shows what
that looks like:

[ExportCodeRefactoringProvider(
  "Core.Refactorings.AutoAlphabetizeCodeRefactoringProvider", 
  LanguageNames.CSharp)]
public sealed class AutoArrangeCodeRefactoringProvider
  : ICodeRefactoringProvider
{

The ICodeRefactoringProvider interface defines one method that you need to
implement: GetRefactoring(). The following code snippet shows how you define it
to find type definitions.

  public CodeRefactoring GetRefactoring(IDocument document,
    TextSpan textSpan, CancellationToken cancellationToken)
  {
    var token = document.GetSyntaxTree(cancellationToken)
      .Root.FindToken(textSpan.Start);
    var parent = token.Parent;

    if (parent != null && (
      parent.Kind == (int)SyntaxKind.ClassDeclaration ||
      parent.Kind == (int)SyntaxKind.StructDeclaration))
    {
      return new CodeRefactoring(

Listing 10.10 Finding class and struct definitions
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        new[] 
        { 
          new AutoArrangeCodeAction(
            this.editFactory, document, 
            parent as TypeDeclarationSyntax)
        });
    }

    return null;
  }
}

Remember, you need to reformat classes or structures to fit a defined style, so you
need to ensure that the text the user has highlighted in Visual Studio is part of a type
declaration. That’s what you’re doing when you examine the Parent node of the
token that maps to the provided TextSpan (the highlighted text in the IDE). Once
you’ve determined that the parent’s Kind is either a ClassDeclaration or a Struct-
Declaration, you pass the parent node as a TypeDeclarationSyntax object to an
AutoArrangeCodeAction object (along with the editFactory and document objects).
This code action object does the heavy lifting in terms of rearranging your class into
the right format. 

10.3.8 Creating a code action
You saw how to create a ICodeAction-based class in section 10.3.3, so let’s focus on the
implementation of GetEdit():

public CodeActionEdit GetEdit(
  CancellationToken cancellationToken)
{
  var captureWalker = new AutoArrangeCaptureWalker();
  captureWalker.VisitTypeDeclaration(this.token);
  var result = new AutoArrangeReplaceRewriter(
    captureWalker).VisitTypeDeclaration(this.token);

  var tree = (SyntaxNode)this.document.GetSyntaxRoot(
    cancellationToken);
  var newTree = tree.ReplaceNodes(new [] { this.token },
    (a, b) => result);
  return new CodeActionEdit(document.UpdateSyntaxRoot(newTree));
}

You can probably guess what the AutoArrangeCaptureWalker and AutoArrange-
ReplaceWriter classes do, based on their names. The first one finds all the members
you want to relocate, and the second one performs the relocations. Let’s see how the
walker works by looking at the VisitTypeDeclaration():

public void VisitTypeDeclaration(TypeDeclarationSyntax node)
{
  this.Target = node;

  var classNode = node as ClassDeclarationSyntax;

  if (classNode != null)
  {
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    base.VisitClassDeclaration(classNode);
  }
  else
  {
    base.VisitStructDeclaration(
      node as StructDeclarationSyntax);
  }
}

What you want to do is visit all the members within the target type node. Therefore,
you tell the base implementation to visit either the class or structure, depending on
what the node type is. The SyntaxWalker then visits all the child nodes within the type
definition, which means you need to override a handful of VisitXYZDeclaration()
methods to capture the members. Here’s what VisitEnumDeclaration() looks like
(the other member overrides are virtually the same):

protected override void VisitEnumDeclaration(
  EnumDeclarationSyntax node)
{
  this.Enums.Add(node);
}

A number of lists are initialized on construction to store nodes that you care about.
You put the node in that list when that node is visited.

 The only exception to this pattern is nested types. Here’s how you handle those nodes:

protected override void VisitClassDeclaration(
  ClassDeclarationSyntax node)
{
  var capture = new AutoArrangeCaptureWalker();
  capture.VisitTypeDeclaration(node);
  this.Types.Add(capture);
}

You create a new AutoArrangeCaptureWalker object for that nested type and let that
walker find all of the nested type’s members. Then you store that walker in a list you’ll
use when you reorder the root type definition. Note that the VisitStructDeclaration()
method is done in the exact same way as VisitClassDeclaration().

 Once you’ve walked the target type, you need to transform the target type to con-
tain the reordered members. The first thing to do is resort each list, as shown in the
following listing.

public AutoArrangeReplaceRewriter(
  AutoArrangeCaptureWalker rewriter)
{
  rewriter.Constructors.Sort(
    (a, b) => a.Identifier.ValueText.CompareTo(
      b.Identifier.ValueText));
  rewriter.Enums.Sort(
    (a, b) => a.Identifier.ValueText.CompareTo(

Listing 10.11 Resorting all the type members
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      b.Identifier.ValueText));
  rewriter.Events.Sort(
    (a, b) => a.Identifier.ValueText.CompareTo(
      b.Identifier.ValueText));
  rewriter.Fields.Sort(
    (a, b) => a.Declaration.Variables[0]
      .Identifier.ValueText.CompareTo(
        b.Declaration.Variables[0]
          .Identifier.ValueText));
  rewriter.Methods.Sort(
    (a, b) => a.Identifier.ValueText.CompareTo(
      b.Identifier.ValueText));
  rewriter.Properties.Sort(
    (a, b) => a.Identifier.ValueText.CompareTo(
      b.Identifier.ValueText));
  rewriter.Types.Sort(
    (a, b) => a.Target.Identifier.ValueText.CompareTo(
      b.Target.Identifier.ValueText));

  this.nodes = new List<SyntaxNode>();
  this.nodes.AddRange(rewriter.Events);
  this.nodes.AddRange(rewriter.Fields);
  this.nodes.AddRange(rewriter.Constructors);
  this.nodes.AddRange(rewriter.Methods);
  this.nodes.AddRange(rewriter.Properties);
  this.nodes.AddRange(rewriter.Enums);
  this.nodes.AddRange(
    from typeRewriter in rewriter.Types
    select new AutoArrangeReplaceRewriter(typeRewriter)
      .VisitTypeDeclaration(typeRewriter.Target)
        as TypeDeclarationSyntax);
}

Each member is resorted in its list, and a new list is created that contains the resorted
members in the correct order. The nested types are handled by creating an Auto-
ArrangeReplaceRewriter for that type and putting the results of VisitType-
Declaration() into the nodes list.

 As was the case with AutoArrangeCaptureRewriter, a custom VisitType-
Declaration() method is created to visit (and subsequently replace) all the members
with the members in proper order:

public TypeDeclarationSyntax VisitTypeDeclaration(
  TypeDeclarationSyntax node)
{
  var classNode = node as ClassDeclarationSyntax;

  if (classNode != null)
  {
    return base.VisitClassDeclaration(classNode)
      as ClassDeclarationSyntax;
  }
  else
  {
    return base.VisitStructDeclaration(
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      node as StructDeclarationSyntax)
      as StructDeclarationSyntax;
  }
}

Similarly, the desired VisitXYZDeclaration() methods are overridden to handle the
replacement strategy. You can see how that’s done with VisitEnumDeclaration() as
an example:

protected override SyntaxNode VisitEnumDeclaration(
  EnumDeclarationSyntax node)
{
  return this.Replace(node);
}

The Replace() method is what handles the reordering:

private SyntaxNode Replace(SyntaxNode node)
{
  SyntaxNode result = null;

  if (this.count < this.nodes.Count)
  {
    result = this.nodes[this.count];
    this.count++;
  }
  else
  {
    throw new NotSupportedException();
  }

  return result;
}

At this point, it’s simple. You need to keep track of how many members you’ve already
visited (which is done with the count field) and replace the current one with the right
one in the nodes list.

 That’s pretty much it. Now let’s see what it looks like when you use it in Visual Studio.

10.3.9 Viewing the results

Once your project launches a Roslyn-based Visual Studio instance, you can create a
new project with a class that has its members in any kind of order. Then, select the
sealed text for a given class definition—you should see a small, blue-ish rectangle to
the left of the highlighted text. If you hit Ctrl+. (the period key), you’ll get a preview
window of the results, as figure 10.11 demonstrates.

 If you accept the changes, the members will move around in the IDE, and you’ll
have a result that looks something like figure 10.12.

 With Roslyn, you can do pretty much whatever you want to do with your code in
the editor. It’s a matter of figuring out how to work the API to produce the results
you desire.
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10.4 Summary
This chapter gave you a preview of the Roslyn API. You saw how Roslyn provides you
with a rich view of your code with parsers that provide tokens and trees. You were able
to use this functionality to generate and execute C# code at runtime. You also wrote
code that interacted with the Visual Studio IDE to not only provide near real-time
feedback to developers to warn them of potential errors, but also to provide solutions
as well. Although Roslyn is only in a CTP state, it’s encouraging to see what Microsoft is
doing with their compilers. Developers like you who love metaprogramming have lots
to play with!

What about the CodeDOM?
As you saw in chapter 4, there’s already an API in .NET called CodeDOM that may
seem similar to Roslyn at first glance. But CodeDOM is more limiting in what it can
do than Roslyn. For a thorough description of the differences between these APIs,
visit http://mng.bz/Tx53.

Figure 10.11 Previewing the auto-arrange refactoring. As you can see, the 
position of the members has already changed—it’s a matter for the user to 
accept the change.

Figure 10.12 Autoarranging code. Once the refactoring is done, the 
members are in the right order.

http://mng.bz/Tx53


appendix A
Metaprogramming

in Windows 8

Two years ago, when we first envisioned writing this book, we didn’t consider the
next version of Windows to be a big deal. Frankly, we thought you would be reading
Metaprogramming in .NET well before the next versions of Windows (and Visual Stu-
dio) were released, and we had no idea just how much Windows would change.
Fate intervened. We finished this book’s content just as Windows 8 and Visual Stu-
dio 2012 were released to manufacture. Although we didn’t want to refocus the
entire book on these two new versions for multiple reasons, we felt we should
briefly mention some differences you’ll run into if you decide to develop applica-
tions for Windows 8 using Visual Studio 2012. 

 It’s important to be aware of the changes as you enter the brave new world
of Windows 8.

A.1 The limits of emitting code
A whole new API called the Windows Runtime is the foundation upon which all
Windows 8 applications are built and you will definitely encounter changes when
you start to work on a Windows 8 application.  If you’re using C# or JavaScript or
C++, it doesn’t matter in Windows 8: every language binds to these functions in one
way or another. The main difference in Windows 8 is how the runtime API is pro-
jected to a language. A simple example is with function names. In JavaScript,
function names are typically formatted in camel case; in .NET, Pascal case is the
convention. These conventions are adhered to in the language projections, so
the API feels natural to the developer.

 There are also limitations in terms of what you can and cannot do in a Windows 8
application. One has to do with isolated storage. You can’t just open a file from
316



317Expressions are supported
the C drive as you could in a typical .NET application. You must use the Windows
.Storage namespace, which restricts file use to an isolated area for your application.
For the metaprogramming enthusiast, there’s another limitation, and it has to do with
Reflection.Emit.

 As you saw in chapter 5, to create dynamic types at runtime, you must use the types
within the System.Reflection.Emit namespace. In a Windows 8 application, these types
are not projected to you. If you type System.Reflection.Emit in Visual Studio 2012, you’ll
see that only a small handful of enumerations are available; you don’t have access to
AssemblyBuilder, TypeBuilder, and so on. Proxy libraries, mocking frameworks,
dynamic serialization generators … there’s no way to generate dynamic types in Win-
dows 8. This API is not available for a number of reasons, but at the end of the day,
there’s no fighting it.

 Well, that’s not exactly true. You can’t load code generated at runtime, but you can
load code generated with all the code you package together and ship to the Windows
Store. So it’s possible that you could generate all the types you’d need in an applica-
tion, then load them as needed as your Windows 8 application runs. However, this
seems to defeat the purpose of “dynamic code generated at runtime.” Maybe when
your code runs you don’t need to generate types based on what the user does. Maybe
you only need to generate a couple of types. But with the architecture of the Windows 8
sandbox, you have no choice. If your application needed 145 dynamic types, you’d
have to create all 145 through some kind of pre- or postcompile procedure, and
include those types and the assembly that contains them in your package. This is only
true of Windows 8 applications.

TIP There are a couple of attempts to overcome the absence of Reflection.Emit
in Windows 8. One is MoqRT (https://github.com/mbrit/moqrt#readme)
which analyzes your code to figure out what mocks you’ll need in your tests
and creates those mocks in a static assembly that you reference in code.
Another is a precompiler for a serialization engine called protobuf (http://
mng.bz/eD7u), which generates an assembly you can use in Windows 8 appli-
cations. It’s also conceivable to use the Roslyn APIs to generate code based on
source code analysis from Windows 8 applications and automatically add
assembly references to those autogenerated assemblies as well.

If you want to create a .NET 4.5-based application that will run in Windows 8 through
the Windows 7 Desktop, you can. In this case, all the System.Reflection.Emit goodness
is available to you.

A.2 Expressions are supported
Before you bemoan the Windows 8 programming model too much, especially as it
relates to metaprogramming, keep in mind that all is not lost. As you know from chap-
ter 6, there’s another way to create new functions as your code is running, and that’s
through LINQ expressions. This is still available in a Windows 8 application. In fact,

https://github.com/mbrit/moqrt#readme
https://github.com/mbrit/moqrt#readme
http://mng.bz/eD7u
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running code like the following (lifted from section 6.1.1) produces the expected out-
put of 5:

Expression<Func<int, int, int>> add = (x, y) => x + y;
var result = add.Compile()(2, 3);

If your applications depend on expressions to support some kind of metaprogram-
ming concept, you can still use that in Windows 8.

A.3 Changes with Reflection
There are a couple of changes that happen with Windows 8 and .NET 4.5 with respect
to the Reflection API. The first one is how the Type class is projected into Windows 8.
There’s a new class called TypeInfo, and you’ll use it a lot in Windows 8 if you do any
Reflection-based programming, because it’s the only way to access and invoke members
at runtime. You don’t see methods like IsAssignableFrom on a Type object like this:

typeof(object).IsAssignableFrom(typeof(Math))

You have to do it this way:

typeof(object).GetTypeInfo().IsAssignableFrom(typeof(Math).GetTypeInfo())

The GetTypeInfo() takes you from a Type to a TypeInfo, and the AsType() extension
method brings you back from a TypeInfo to a Type.

 As you’ve probably already guessed with a Windows 8 application and its security
model, you can only access public members; you can’t access private members. Again,
these changes are strictly for Windows 8 applications. If you’re targeting .NET 4.5 out-
side of Windows 8, you can still use the full Type class.



appendix B
Usage guide

The following table lists guidelines for using the techniques demonstrated in chap-
ters 2–10. These should aid you in making decisions as to when to use a particular
framework or approach, depending on your architecture and design parameters at
hand. Chapter 1 is not included because it is essentially an introductory chapter.  

Chapter Technique(s) Guidelines

2  Exploring code and 
metadata with Reflection

Using the 
System.Reflection API

Using arbitrary code members (for 
example, methods, properties, etc.) 
based on base class definitions or stan-
dard naming conventions, composing 
dynamic code paths at runtime, or exe-
cuting code based on the existence of 
metadata

3  The Text Template Trans-
formation Toolkit

Using the T4 engine Generating new text (usually code) 
via templates to simplify creating 
similar code

4  Generating code with the 
CodeDOM

Using the 
System.CodeDom API

Generating new code from an expres-
sion-based API for different languages

5  Generating code with 
Reflection.Emit

Using the 
System.Reflection.Emit API

Creating and executing new code at run-
time at the IL level, either as whole 
types or distinct methods, or compiling 
dynamic, discovered code path execu-
tion based on Reflection for perfor-
mance gains

6  Generating code with 
Expressions

Using the 
System.Linq.Expressions 
API

Creating new methods at runtime 
using a higher-level API, or creating 
new methods based on Expressions 
at runtime
319
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Chapter Technique(s) Guidelines

7  Generating code with 
IL rewriting

Using the Cecil API Static analysis of assemblies, full control 
of assembly content, or post-compilation 
weaving of new code into any assembly

8  The Dynamic Language 
Runtime

Using the DLR Provides support for dynamic/scripting 
languages in .NET, or to handle dynamic 
code execution in .NET without directly 
using Reflection

9  Languages and tools Using alternate languages 
(e.g., Boo) and third-party 
libraries (e.g., PostSharp)

Experimentation of coding concepts (such 
as quotations) that are not supported in 
C# or VB, or using existing frameworks to 
handle metaprogramming concepts

10  Managing the 
.NET compiler 

Using Project Roslyn Access to compiler services for code 
modification techniques, real-time 
analysis of C# or VB code for code 
analysis and refactorings, or Visual 
Studio integration of custom code issues 
and refactorings
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